Брайан Грин - До конца времен. Сознание, материя и поиски смысла в меняющейся Вселенной
- Название:До конца времен. Сознание, материя и поиски смысла в меняющейся Вселенной
- Автор:
- Жанр:
- Издательство:АНФ
- Год:2020
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Брайан Грин - До конца времен. Сознание, материя и поиски смысла в меняющейся Вселенной краткое содержание
«До конца времен» — попытка поиска места для человека в картине мира, которую описывает современная наука. Грин показывает, как в противоборстве двух великих сил — энтропии и эволюции — развертывается космос с его галактиками, звездами, планетами и, наконец, жизнью. Почему есть что-то, а не ничего? Как мириады движущихся частиц обретают способность чувствовать и мыслить? Как нам постичь смысл жизни в леденящей перспективе триллионов лет будущего, где любая мысль в итоге обречена на угасание?
Готовые ответы у Грина есть не всегда, но научный контекст делает их поиск несравненно более интересным занятием.
До конца времен. Сознание, материя и поиски смысла в меняющейся Вселенной - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Хокинг вернулся к рассмотрению этих квантовых процессов, но теперь он представил, что происходят они снаружи от горизонта событий черной дыры, совсем рядом. Когда пара «частица — античастица» возникает в такой обстановке, то иногда эти две частицы аннигилируют очень быстро, как это произошло бы в любом другом месте. Но, и это самое главное, Хокинг понял, что в некоторых случаях они не аннигилируют. Может случиться так, что одну из частиц пары затянет в черную дыру. Уцелевшая частица, лишенная теперь партнера, с которым она могла бы аннигилировать (и не забывающая о стоящей перед ней задаче сохранения полного импульса), пускается наутек. А поскольку подобное происходит то и дело в каждой крохотной области пространства по всей поверхности сферического горизонта черной дыры, извне это выглядит так, будто сама дыра излучает частицы во всех направлениях; мы называем это хокинговским излучением.
Более того, согласно расчетам, каждая такая частица, падающая в черную дыру, обладает отрицательной энергией (возможно, это не удивительно, имея в виду, что частица-партнер, убегающая от дыры, обладает положительной энергией, а суммарная энергия должна сохраняться). Когда черная дыра пожирает эти частицы с отрицательной массой, она как будто съедает отрицательные калории, в результате чего ее масса снижается, а не возрастает. Таким образом, если смотреть снаружи, создается впечатление, что черная дыра постепенно сжимается, излучая частицы. Если бы источник излучения не был столь экзотичным, — черная дыра, погруженная в квантовую ванну флуктуирующих частиц, непременно присутствующих в пустом пространстве, — этот процесс казался бы совершенно очевидным, как мерцающий уголек, излучающий фотоны и постепенно выгорающий притом8.
Точно так же, как растущая черная дыра, что бы она ни поглощала — горячий чай или беспокойные звезды, — полностью подчиняется второму началу термодинамики, то же можно сказать и о сжимающейся черной дыре. Уменьшение площади горизонта событий сжимающейся черной дыры означает снижение ее собственной энтропии, но излучение, испускаемое черной дырой, улетающее наружу и распределяющееся по все более обширному пространству, передает более чем компенсирующий запас энтропии окружающей среде. Знакомая хореография: излучая, черная дыра танцует энтропийный тустеп.
Результат Хокинга сделал это описание математически точным. Помимо многого другого, он открыл точную формулу для температуры светящейся черной дыры. Я дам качественное объяснение результата в следующем разделе (а те, кто интересуется математикой, найдут формулу в примечаниях9), но для нас здесь главное то, что температура обратно пропорциональна массе черной дыры. Примерно как взрослые датские доги огромны и отличаются мягким нравом, а собаки породы ши-тцу мелки и вздорны, крупные черные дыры спокойны и прохладны, тогда как мелкие — неистовы и горячи. Некоторые числа, благодаря формуле Хокинга, прекрасно это объясняют. Для крупной черной дыры, такой как в центре нашей Галактики, превосходящей по массе Солнце в 4 млн раз, формула Хокинга дает ничтожную температуру в одну сотую триллионной доли градуса выше абсолютного нуля (10 -14К). Для более мелкой черной дыры с массой порядка массы Солнца температура выше, но тоже далеко не курортная — чуть меньше одной десятой от одной миллионной доли градуса (10 -7К). Крохотная черная дыра массой, скажем, с апельсин сияла бы с температурой около триллиона триллионов градусов (10 24К).
Черная дыра с массой, превышающей массу Луны, имеет температуру ниже температуры реликтового излучения (2,7 К), пронизывающего в настоящее время космос. При помощи этого любопытного, но бесполезного факта космологической значимости удобно демонстрировать свою эрудицию на светской вечеринке. Поскольку теплота спонтанно перетекает от более высоких температур к более низким, здесь она будет течь из замороженной среды с микроволновым излучением, окружающей черную дыру, к еще более замороженной черной дыре. А черная дыра, хотя и испускает хокинговское излучение, в сумме будет принимать больше энергии, чем высвобождать, и постепенно увеличивать свою массу. Даже самые маленькие черные дыры, открытые до сих пор в ходе астрономических наблюдений, гораздо массивнее Луны, поэтому все они находятся в стадии распухания. Однако по мере дальнейшего расширения Вселенной реликтовое излучение будет становиться все более разреженным, а его температура продолжит снижаться. В далеком будущем, когда фоновая температура пространства упадет ниже температуры какой-то конкретной черной дыры, энергетический маятник качнется обратно; черная дыра станет излучать больше, чем получать, и в результате начнет съеживаться.
В конечном итоге черные дыры тоже исчезнут.
Многие вопросы, касающиеся черных дыр, остаются на переднем плане современных исследований; один из них, очень важный для нашего рассказа, имеет отношение к последним мгновениям существования черной дыры. Когда черная дыра излучает, ее масса снижается и, соответственно, температура растет. Что происходит, когда черная дыра близка к исчезновению, ее масса приближается к нулю, а ее температура взлетает к бесконечности? Она что, взрывается? Или выпускает газ, как шипучка? Или еще как-нибудь? Мы не знаем. Несмотря на вопросы, количественное понимание хокинговского излучения позволило физику Дону Пейджу определить скорость, с которой сжимается заданная черная дыра, и, соответственно, время, которое потребуется ей на полное исчезновение — каким бы ни было ее последнее мгновение 10. Если взять черную дыру с массой Солнца как пример тех черных дыр, которые формируются из умирающих звезд, результат Пейджа показывает, что приблизительно к 68-му этажу Эмпайр-стейт билдинг, то есть через 1068 после Большого взрыва, такие черные дыры уйдут в излучение.
Считается, что в центре большинства галактик, если не всех, располагаются сверхмассивные черные дыры. По ходу астрономических обзоров один рекордсмен сменял другого и масса чемпионов приближалась к 100 млрд масс Солнца. Черная дыра такой массы имеет настолько большой горизонт событий, что он протянулся бы от Солнца за орбиту Нептуна, чуть ли не до облака Оорта. Даже если вы плохо представляете себе, кто такой Оорт и что у него за далекое облако, имейте просто в виду, что солнечному свету требуется более 100 часов, чтобы добраться туда, так что речь идет о черной дыре монструозных размеров. Но, как я сейчас объясню, громадные размеры таких черных дыр дают неверное представление об их мирном нраве.
Исходя из общей теории относительности, рецепт строительства черной дыры чертовски прост: нужно собрать сколько угодно массы и сформировать из нее шар достаточно маленького размера 11. Конечно, даже поверхностное знакомство с черными дырами заставит вас ожидать, что «достаточно маленький» здесь означает по-настоящему маленький, очень-очень маленький, маленький до нелепости. И в некоторых случаях это верно. Чтобы превратить грейпфрут в черную дыру, вам пришлось бы сжать его до 10 -25см в поперечнике; чтобы превратить в черную дыру Землю, вам пришлось бы сжать ее примерно до 2 см в поперечнике; для Солнца этот размер составит примерно 6 км в поперечнике. Каждый из этих примеров требует фантастически сильного сжатия вещества, что вносит свой вклад в широко распространенное мнение о том, что для формирования черной дыры нужны потрясающие плотности. Но если бы вы продолжили для составления каталога брать примеры, намного превосходящие массой Солнце, и сосредоточились бы на формировании все более крупных черных дыр, вы заметили бы закономерность, которая, возможно, удивила бы вас.
Читать дальшеИнтервал:
Закладка: