Бруно Понтекорво - Атомный проект. Жизнь за «железным занавесом»

Тут можно читать онлайн Бруно Понтекорво - Атомный проект. Жизнь за «железным занавесом» - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство Родина, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Атомный проект. Жизнь за «железным занавесом»
  • Автор:
  • Жанр:
  • Издательство:
    Родина
  • Год:
    2020
  • Город:
    Москва
  • ISBN:
    978-5-907351-60-8
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Бруно Понтекорво - Атомный проект. Жизнь за «железным занавесом» краткое содержание

Атомный проект. Жизнь за «железным занавесом» - описание и краткое содержание, автор Бруно Понтекорво, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Ученик великого Э. Ферми, сотрудник Ф. Жолио-Кюри, почетный член Итальянской академии деи Линчей Бруно Понтекорво родился в Италии, работал во Франции, США, Канаде, Англии, а большую часть своей жизни прожил в России. Бруно Понтекорво известен как один из ведущих физиков эпохи «холодной войны». В то время, как главы государств мечтали о мировом господстве, которое им подарит ядерное оружие, лучшие ученые всего мира боролись за «ядерное равновесие» и всеми возможными способами старались не разрывать прочные научные связи, помогавшие двигать науку вперед. Понтекорво до последних дней жизни поддерживал дружбу со своим учителем, одним из ведущих ученых «Манхэттенского проекта» Энрико Ферми, а также вел переписку с другими участниками проекта. Воспоминания этого ученого полны необычными деталями, описывающими закрытую и даже засекреченную жизнь ядерных физиков середины ХХ века. Интересная и наполненная яркими событиями судьба, исключительный ум и независимые взгляды позволили ученому создать ряд статей, описывающих мир с простой и понятной точки зрения физика. Именно они вместе с воспоминаниями о жизни в Штатах и СССР, и составили основу этой книги.

Атомный проект. Жизнь за «железным занавесом» - читать онлайн бесплатно ознакомительный отрывок

Атомный проект. Жизнь за «железным занавесом» - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Бруно Понтекорво
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Исследования нейтрино бурно развиваются, особенно в связи с созданием советскими и зарубежными физиками новой области физики элементарных частиц — физики нейтрино высоких энергий.

Нейтрино, испускаемые радиоактивными ядрами урановых реакторов, имеют энергию, по порядку величины равную характерной ядерной энергии, т. е. несколько миллионов электронвольт. Эта энергия в миллион раз превышает энергию электронов в атоме, но сегодня, когда имеются машины, ускоряющие частицы до десятков миллиардов электронвольт, реакторы рассматриваются как источники нейтрино низкой энергии.

Для физики нейтрино высоких энергий характерно то, что в этой области науки исследуются главным образом нейтрино «пионной природы», т. е. нейтрино, рождающиеся при распаде пиона.

Как можно получить пучок нейтрино пионной природы?

Представьте себе современный ускоритель, дающий протоны с энергией в десятки миллиардов электронвольт (такой, как дубненский синхрофазотрон Объединенного института ядерных исследований или американский брукхейвенский ускоритель). Когда протоны попадают на мишень (скажем, алюминиевую пластинку толщиной в несколько сантиметров), рождаются пионы. Эти пионы распадаются на лету (средний путь их до распада в вакууме измеряется десятками метров). При этом образуется нейтрино согласно схеме

π → μ + ν

И вот именно пучки нейтрино пионной природы используются в настоящее время в крупнейших лабораториях мира. Масштаб опытов потрясающ. Для их выполнения необходимы ускорители с магнитами, вес которых превышает десятки тысяч тонн, а сам детектор нейтрино весит десятки тонн.

Каковы главные проблемы физики нейтрино высоких энергий? Современная количественная теория слабых взаимодействий, созданная недавно Ричардом П. Фейнманом и Мюрреем Гелл-Манном на основе идей Ферми, Ли и Янга, Ландау и Салама, универсальна. Это означает, что поведение всех других частиц при слабых взаимодействиях по существу одинаково с поведением нейтрино.

Согласно теории Фейнмана и Гелл-Манна, физические процессы, связанные со слабым взаимодействием, в области малой энергии можно рассчитать довольно хорошо. Но при больших энергиях появляются фундаментальные трудности. Сама теория предсказывает, что слабость взаимодействия нейтрино относительно уменьшается, когда энергия нейтрино увеличивается.

Если это увеличение интенсивности взаимодействия нейтрино с возрастанием энергии продолжается, то при фантастически высокой энергии в 300 миллиардов электронвольт мы столкнулись бы с абсурдным результатом: вероятность некоторых событий превышала бы единицу, а мы знаем, что вероятность по ее природе всегда менее единицы или равна ей. Это означает, что при энергии меньше 300 миллиардов электронвольт увеличение интенсивности взаимодействия должно прекратиться.

Но сразу возникают следующие вопросы. Будет ли увеличение интенсивности взаимодействия прекращаться вблизи 300 миллиардов электронвольт или при очень существенно меньшей энергии? Этот вопрос можно поставить и по-другому: станет ли слабое взаимодействие сильным при очень высокой энергии или нет?

Второй вопрос: какой механизм отвечает за прекращение роста интенсивности взаимодействия?

Определенных ответов на эти вопросы физики пока не могут дать. Самый простой теоретический ответ (правда, не обязательно правильный) состоит в предположении, что слабые взаимодействия четырех частиц (например, нейтрона, протона, электрона и нейтрино при бета-распаде) имеют, так сказать, вторичный характер: они как будто обусловлены гипотетической частицей В (физики называют ее «промежуточным бозоном», а почему, я не стану объяснять), которая является носителем слабых взаимодействий.

Приводимые здесь схемы представляют соответственно бета-распад нейтрона при двух предположениях:

а) без промежуточного бозона, т. е. когда процесс взаимодействия четырех частиц — первичный (или, как говорят, локальный);

б) когда взаимодействие четырех частиц вторично и осуществляется промежуточным бозоном.

Оказывается, что во втором случае увеличение интенсивности взаимодействия с ростом энергии частиц естественным образом прекращается при относительно небольшой энергии.

Таким образом, существование частицы В помогает понять трудный теоретический вопрос. В настоящее время в разных лабораториях предпринимаются попытки наблюдать эту частицу при помощи пучков нейтрино высокой энергии.

Но, оказывается, и существование этой гипотетической заряженной частицы создает определенные трудности.

Дело в том, что на основании ее существования физики предсказали ряд процессов, которые в действительности не происходят. Правда, трудность довольно общая и не связана только с существованием частицы В, но она особенно ярко проявится, если заряженный промежуточный бозон существует. Типичный пример таких неосуществимых процессов — так называемый радиационный распад мюона, т. е. испускание мюоном электрона и фотона:

μ± → е± + γ

В течение долгого времени физики безуспешно пытались обнаружить этот процесс. Что же запрещает мюону превращаться в электрон и фотон? Здесь следует возвратиться к общему понятию о зарядах частиц.

Вспомним, что при разных превращениях любой заряд сохраняется точно так же, как электрический. Именно тот факт, что некоторые, на первый взгляд возможные, превращения частицы на самом деле не наблюдаются, заставил ввести понятие разных зарядов. Неуничтожаемость заряда (любого, а не только электрического) запрещает эти превращения. Например, мы знаем, что нуклоны — протоны и нейтроны — никогда не распадаются только на «легкие частицы». Это позволяет утверждать, что нуклон имеет так называемый барионный заряд, а никакая комбинация легких частиц барионного заряда не имеет.

Сразу возникает подозрение, что процессы типа распада мюона на электрон и фотон, которые ожидались теоретически, но в действительности не происходят, запрещены законом сохранения некоторого до сих пор неизвестного заряда, скажем, «мюонного» заряда, характерного для мюона, но не для электрона. Здесь следует напомнить, что фотон — истинно нейтральная частица. Он не имеет никаких зарядов.

Однако имеется один процесс — распад мюона, в котором мюон и электрон участвуют совместно. Такой процесс состоит в испускании мюоном электрона совместно с двумя разными частицами ничтожно малой массы, о чем свидетельствуют экспериментальные исследования формы спектра электронов в этом процессе. На этом основании долго думали, что процесс идет по схеме

μ± → е± + ν + ṽ

Но такая схема трудно совместима с предположением о существовании мюонного заряда, запрещающего переход мюона в электрон и фотон. Ведь пара νν-, по определению частицы и античастицы, не имеет никаких зарядов, как и фотон, так что в описанной схеме мюонный заряд, если он существует, не сохраняется.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бруно Понтекорво читать все книги автора по порядку

Бруно Понтекорво - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Атомный проект. Жизнь за «железным занавесом» отзывы


Отзывы читателей о книге Атомный проект. Жизнь за «железным занавесом», автор: Бруно Понтекорво. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x