Филип Плейт - Смерть с небес. Наука о конце света
- Название:Смерть с небес. Наука о конце света
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2020
- Город:Москва
- ISBN:978-5-0013-9242-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Филип Плейт - Смерть с небес. Наука о конце света краткое содержание
Остроумно и весело известный астрофизик рассказывает о бесчисленных вариантах конца света, которые способен обрушить на нас космос. Предлагая читателю увлекательные и тревожные сюжеты, словно позаимствованные из научной фантастики, Филип Плейт сопровождает их комментариями о том, как они могут повлиять на жизнь на Земле и на саму Вселенную, если воплотятся в жизнь. Но автор не ставит своей целью поразить читателя сенсационной информацией: анализируя тот или иной вероятный сценарий, он показывает, как его предотвратить.
Это безукоризненно научное, но доступное массовому читателю исследование — прекрасный урок астрономии для новичков и подлинное удовольствие для подготовленных любителей науки.
Смерть с небес. Наука о конце света - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Ясно, что такая Вселенная была бы непригодной для жизни. И так же ясно, что наша Вселенная ведет себя совсем по-другому.
Именно на это указал Ольберс, и сегодня эта головоломка называется парадоксом Ольберса. Какое-то время эта проблема озадачивала людей, а разгадка парадокса пришла из довольно удивительного источника: Эдгар Аллан По.
Да, именно тот По. Он не только писал страшные рассказы и депрессивные стихи, такие как «Ворон», но также был довольно глубоким мыслителем. Ему в голову пришла идея, что возможно, проблема лежит не во Вселенной, а в нашем представлении о ней: что, если Вселенная не была бесконечной в пространстве и (или) во времени? Если бы Вселенная была конечной в пространстве, тогда на определенном расстоянии от Земли звезды закончились бы. А если бы она была конечной во времени — то есть имела начало, — тогда свет от очень далеких звезд попросту еще не успел бы дойти до нас. Парадокс разрешен.
По сути, По был прав. В 1848 г. в своей книге «Эврика» он писал:
«Если бы непрерывность звезд была бесконечна, тогда бы заднее поле неба являло нам единообразную светящесть, подобную исходящей от Млечного Пути, — ибо, безусловно, не было бы точки на всем этом заднем поле, где не существовало бы звезды. Единственный способ поэтому, при таком положении вещей, понять пустоты, что открывают наши телескопы в бесчисленных направлениях, предположить, что рассеяние от незримого заднего поля так несметно, что ни один его луч доселе совершенно не мог нас достигнуть. Что это может быть так, кто решится отрицать? Я утверждаю, просто, что у нас нет даже тени причины веровать, что это так» [126] По Э. А. Ворон. Полное собрание сочинений. — М.: Иностранка, Азбука-Аттикус, 2018.
.
Для того времени это было революционным мышлением. Несмотря на то что с середины до конца XIX в. в обществе было принято считать, что Вселенная имеет начало, потому что именно это утверждается в Библии, ученых это как-то не очень удовлетворяло. По все изменил.
Менее чем 100 лет спустя астроном Эдвин Хаббл вместе с другими астрономами, такими как Весто Слайфер и Эллери Хейл, сделали одно из самых потрясающих открытий в истории науки: практически все галактики, которые они могли наблюдать, похоже, мчались прочь от нас. В это было столь сложно поверить, что потребовались годы наблюдений, чтобы убедить всех, но доказательства были неоспоримыми: сама Вселенная расширяется.
Это имело глубокие последствия. Если галактики разлетаются от нас, тогда со временем они становятся все более далекими. В свою очередь, это означает, что в прошлом они были ближе друг к другу. Если перевести космические часы достаточно далеко назад в прошлое, тогда в определенный момент времени каждая галактика, каждый фрагмент материи и энергии во Вселенной, должны были находиться в одной точке.
А значит, у Вселенной было начало, момент времени, когда все началось. Материя и энергия вырвались из той временной точки, постоянно расширяясь. Альберт Эйнштейн уже работал над общими уравнениями, определяющими поведение времени и пространства, когда группа Хаббла обнаружила космическое расширение, и новости об открытии привели его в восторг. Вскоре ученые признали, что работа Эйнштейна была верной и что саму Вселенную можно описать, используя математику.
Так сформировалась модель Большого взрыва.
С годами модель переделывали, уточняли, что-то добавляли, а что-то убирали. Когда астроном использует термин « Большой взрыв» , он не просто имеет в виду ту точку сингулярности 13,7 млрд лет назад; он также подразумевает огромную работу, проделанную для того, чтобы модель соответствовала всему, что мы наблюдаем во Вселенной. И на деле, это одна из самых успешных научных теорий в истории [127] Я использую слово «теория» в научном смысле: набор идей, настолько хорошо установленных путем наблюдений и физических моделей, что он, по сути, неотличим от факта. Не будем путать с обиходным значением «догадка». Ученый может жизнью поручиться за теорию. Не забывайте, гравитация — тоже «всего лишь теория».
.
Одним критическим фактором для подтверждения модели Большого взрыва является имеющая предел скорость света. Может показаться странным, но именно эта конечная скорость позволяет нам увидеть, чем Вселенная занималась в прошлом. Представьте, что скорость света была бы бесконечно большой. Если бы мы смотрели на галактику, находящуюся на расстоянии 10 млрд световых лет, мы бы видели ее такой, какая она прямо сейчас, именно в этот момент. Вероятно, она была бы очень похожа на нашу и мы мало что могли бы узнать от нее о Вселенной.
Но вместо этого у нас есть удивительная характеристика Вселенной: свет — не безгранично быстрый. Он очень быстрый, проходит 300 000 км за каждую секунду (это примерно 30 см в наносекунду, если вам так проще представить), но Вселенная столь велика, что луч света от какой-нибудь далекой галактики идет до нас очень долго.
Это означает, что мы видим галактики не такими, какие они прямо сейчас; мы видим их такими, какими они были в молодости. В этом отношении телескопы очень похожи на машины времени — чем дальше мы смотрим в пространство, тем дальше мы смотрим в прошлое. Как мы определили, какой была Вселенная 5 млрд лет назад? Легко: найдите галактики, которые находятся на расстоянии 5 млрд световых лет, и посмотрите на них.
А зачем на этом останавливаться? Наши телескопы огромны, а детекторы чувствительны. Мы видели галактики на расстоянии более 12 млрд световых лет, поэтому мы видим их такими, какими они были, когда самой Вселенной был примерно 1 млрд лет от роду. Благодаря этому мы на самом деле видим, как выглядели галактики, когда они были молодыми, и обнаруживаем, что происходит, когда они стареют.
Мы также можем находить и анализировать газ в пространстве между галактиками в удаленных областях Вселенной, который, в свою очередь, говорит нам еще больше о тех ранних условиях. Более того, радиотелескопы, настроенные на микроволновый диапазон спектра, обнаружили равномерное шипение, поступающее со всех сторон неба. Это шипение — не шум: в реальном смысле это остывающий свет от огненного шара рождения Вселенной. Спустя примерно 100 000 лет [128] Точнее — спустя 380 000 лет по данным реликтового излучения. — Прим. науч. ред.
Вселенная расширилась и остыла достаточно, так что материя стала прозрачной для света, а значит, свет мог легко проходить сквозь нее. Раньше какой-нибудь фрагмент материи поглотил бы фотон, и тот не смог бы улететь очень далеко. Этот свет, получивший возможность свободно распространяться в пространстве, с тех пор «остыл» по мере расширения Вселенной и смог дойти до наших поджидающих приборов.
Интервал:
Закладка: