Герман Смирнов - Под знаком необратимости (Очерки о теплоте)

Тут можно читать онлайн Герман Смирнов - Под знаком необратимости (Очерки о теплоте) - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Знание, год 1977. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Под знаком необратимости (Очерки о теплоте)
  • Автор:
  • Жанр:
  • Издательство:
    Знание
  • Год:
    1977
  • Город:
    М.,
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Герман Смирнов - Под знаком необратимости (Очерки о теплоте) краткое содержание

Под знаком необратимости (Очерки о теплоте) - описание и краткое содержание, автор Герман Смирнов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Весь окружающий нас физический мир развивается и изменяется по законам необратимости. Благодаря необратимости превращаются в теплоту механическое, электрическое, световое и другие формы движения. И через необратимость термодинамика — учение о теплоте — пронизывает все без исключения разделы современной науки.
Автор в живой увлекательной форме показывает пути становления принципов термодинамики, судьбу ее творцов, рассказывает о проблемах, которые были разрешены этой наукой в прошлом и над которыми специалисты работают сейчас.
Брошюра рассчитана на широкий круг читателей.

Под знаком необратимости (Очерки о теплоте) - читать онлайн бесплатно полную версию (весь текст целиком)

Под знаком необратимости (Очерки о теплоте) - читать книгу онлайн бесплатно, автор Герман Смирнов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Кельвин не ограничился только расчетами. Больше ста лет назад он сделал попытку, осуществить отопление с помощью теплового насоса. Но, увы, воздушная машина, которую он пытался приспособить для этой цели, оказалась слишком неэкономичной, большой по размерам и ненадежной. Она не смогла, конечно, конкурировать с дешевым углем. Эта идея была оставлена почти на 100 лет.

Специалисты, которые в прошлом столетии разрабатывали и совершенствовали холодильное оборудование, едва ли подозревали о том, что они своей работой подготавливают возрождение идеи, предложенной Кельвином. Ведь холодильная машина и тепловой насос — это один и тот же механизм, и обычный домашний холодильник — прекрасная отопительная система. Работая, он нагревает воздух в помещении, передавая ему превращенную в тепло механическую работу, совершенную электродвигателем, и тепло, отнятое у продуктов в камере холодильника. Чтобы улучшить экономичность такой холодильной машины и превратить ее в настоящий тепловой насос, надо охлаждать не продукты, а воду, почву или атмосферный воздух.

В странах с суровыми зимами невыгодно пользоваться атмосферным воздухом, ибо температура такого источника понижается, уменьшая эффективность теплового насоса как раз тогда, когда потребность в отоплении — наивысшая. Гораздо удобнее погружать змеевики теплового насоса на дно реки или озера. Здесь даже в самый трескучий мороз температура всегда постоянна — около 4 °C. Если же поблизости рек и озер нет, то змеевики можно закопать глубоко в землю: здесь температура тоже не зависит от времени года.

В крупных городах можно найти еще более удобные источники тепла. Например, многие химические фабрики выбрасывают воду, нагретую до 25–36 °C. Бани, гостиницы, рестораны сбрасывают горячую воду, содержащую почти 90 % подведенного к ним тепла. Источником тепла для тепловых насосов может стать теплый воздух, который нагревается, охлаждая трансформаторы подстанций.

Отопление, конечно, не единственная область применения тепловых насосов. С их помощью можно нагревать воду, получать пресную воду из морской, точно регулировать температуру различных процессов в химической промышленности. И если они применяются еще довольно редко, то лишь потому, что тепловой насос гораздо дороже печки, а электроэнергия, которую он потребляет, гораздо дороже дров или угля. Но там, где электроэнергии много и она дешева, тепловые насосы успешно конкурируют с обычными системами отопления. Самое ценное достоинство теплового насоса, сулящее ему большие перспективы в будущем, это то, что он, в отличие от печки, обратимая машина. Он может «накачивать» тепло в помещение, если нам холодно, может «откачивать» его, если нам жарко, с помощью одного и того же механизма. Сравнительно просто произвести такое переключение, превращающее отопитель в охладитель. Но ведь это же идеальный кондиционер! Он может работать круглый год, зимой — нагревая воздух, летом — охлаждая его. И не случайно в последнее время возродился интерес к тепловым насосам.

Самый совершенный тепловой насос — лишь первый, хотя и важный шаг на пути создания благоприятной для человеческого организма окружающей среды. Системы кондиционирования в будущем смогут, по-видимому, регулировать не только температуру, давление и влажность воздуха, но и содержание в нем различных ароматических веществ, влияющих на самочувствие, настроение и работоспособность человека. Это практически полностью освободит человечество от влияния даже самых суровых климатических условий, и разница между жизнью в теплом умеренном климате и жизнью в пустыне, в тундре, под землей или в космосе исчезнет. И в расселении человечества в пределах и за пределами земного шара не обойтись без теплового насоса — изобретения, которое сто лет назад было признано не представляющим интереса.

РАЗМЫШЛЕНИЯ О КПД

Рассказывают, был как-то в Баварии необычный судебный процесс, возбужденный владельцем пивной против соседа, который… бесплатно снабжал его энергией. Это на первый взгляд нелепость: судиться из-за того, что вам преподносят подарки. Но на самом деле можно понять кабатчика и его возмущение. Он имел неосторожность проложить трубопровод, по которому охлажденный рассол подавался от холодильной машины в подвал его пивной, через погреб соседа. Последний поспешил воспользоваться случаем, содрал тепловую изоляцию с трубы и стал даром охлаждать свой погреб. Владелец пивной быстро догадался, в чем дело: его пиво стало охлаждаться хуже, а показания электросчетчика увеличились. Он подал в суд, однако судья отклонил иск. «Кража — это незаконное присвоение предмета, — объяснил он — А ваш сосед не присваивал у вас никаких предметов». Тогда кабатчик обвинил соседа в краже энергии, но судья отклонил и это обвинение. Ведь сосед не отнимал теплоту от трубы, а, наоборот, «жертвовал» ее из своего погреба в пользу кабатчика. Так что последнему, в сущности, надо было бы еще даже приплачивать соседу.

Неизвестно, конечно, был такой случай на самом деле или нет, но в нем ярко выявлен парадокс, с которым давно уже сталкивались ученые и инженеры. Или, точнее, с которым сталкивались ученые по вине инженеров…

Вальтер Нернст — открыватель III начала термодинамики — как-то сказал в шутку, что эффект, требующий точности измерения, большей, чем 10 %, не заслуживает того, чтобы быть исследованным. Основоположников термодинамики трудно упрекнуть в том, что они не следовали этому правилу. Промышленность и техника стояли у ее колыбели. Эксперименты с пушечными стволами и паровыми машинами давали отнюдь не труднонаблюдаемые эффекты. Этот «инженерный дух» сохранился в понятиях и формулировках термодинамики и до наших дней, придавая ей основательность, практичность и трезвость прикладной науки. Цена этих достоинств — утрата всеобъемлющей общности термодинамических законов — долгое время не давала о себе знать. Но с течением времени узость понятий, несомненно, удачных с практической точки зрения, начала тормозить развитие этой науки. И понадобилось вмешательство ученых, для того чтобы восстановить былую стройность.

Трудно сказать, кто впервые ввел в обиход понятие КПД — коэффициент полезного действия. Но как бы там ни было, эта величина оказалась поначалу на редкость удобной и простой для оценки совершенства различных механизмов. А какими механизмами раньше всего начали пользоваться в технике? Простейшими — рычагами, клиньями, винтовыми и зубчатыми передачами, блоками и т. д. Все это — преобразователи механической мощности, позволяющие увеличивать силу или момент за счет соответствующего уменьшения скорости или угловой скорости. При всех таких изменениях произведение силы на скорость или момента на угловую скорость остается постоянным. Но это только в идеальном случае, когда нет трения. Когда трение есть, часть мощности превращается в теплоту, и на выходе мощность оказывается меньше, чем на входе. Отношение мощностей на выходе и на входе и есть коэффициент полезного действия — КПД. Ясно, что чем ближе эта величина к единице, тем совершеннее механизм. В идеальном случае, когда нет трения, КПД всех механических преобразователей становится равным единице.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Герман Смирнов читать все книги автора по порядку

Герман Смирнов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Под знаком необратимости (Очерки о теплоте) отзывы


Отзывы читателей о книге Под знаком необратимости (Очерки о теплоте), автор: Герман Смирнов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x