Герман Смирнов - Под знаком необратимости (Очерки о теплоте)

Тут можно читать онлайн Герман Смирнов - Под знаком необратимости (Очерки о теплоте) - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Знание, год 1977. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Под знаком необратимости (Очерки о теплоте)
  • Автор:
  • Жанр:
  • Издательство:
    Знание
  • Год:
    1977
  • Город:
    М.,
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Герман Смирнов - Под знаком необратимости (Очерки о теплоте) краткое содержание

Под знаком необратимости (Очерки о теплоте) - описание и краткое содержание, автор Герман Смирнов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Весь окружающий нас физический мир развивается и изменяется по законам необратимости. Благодаря необратимости превращаются в теплоту механическое, электрическое, световое и другие формы движения. И через необратимость термодинамика — учение о теплоте — пронизывает все без исключения разделы современной науки.
Автор в живой увлекательной форме показывает пути становления принципов термодинамики, судьбу ее творцов, рассказывает о проблемах, которые были разрешены этой наукой в прошлом и над которыми специалисты работают сейчас.
Брошюра рассчитана на широкий круг читателей.

Под знаком необратимости (Очерки о теплоте) - читать онлайн бесплатно полную версию (весь текст целиком)

Под знаком необратимости (Очерки о теплоте) - читать книгу онлайн бесплатно, автор Герман Смирнов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Для видимых световых лучей цвет становится важным фактором: черная краска поглощает 98 % света, а белая — лишь 20 %. Полированная же медь, столь удачно отражающая инфракрасные лучи, в видимой части спектра оказывается хуже, чем белая краска, она поглощает около 26 % света.

Уже эти данные позволяют объяснить многие ранние эксперименты. Опыт флорентийских академиков, например, доказывал: столбик термометра, помещенного в фокусе металлического зеркала, опускается потому, что стремится прийти в тепловое равновесие с глыбой льда. Этот опыт не удавался Пикте при использовании стеклянного зеркала, ибо для инфракрасных лучей стекло все равно что черная бумага для света. Наконец, эксперименты Лесли показали: степень черноты убывает в таком порядке — сажа, писчая бумага, стекло, полированная поверхность.

Но главная заслуга Кирхгофа в другом. Придумав абсолютно черное тело, он подготовил открытие фундаментального закона теплопередачи. Честь экспериментального открытия этого закона досталась Стефану, а его теоретического обоснования — Больцману — двум венским физикам. Закон оказался прост: с увеличением абсолютной температуры абсолютно черного тела в 2 раза количество излучаемой им энергии возрастает в 16 раз, то есть пропорционально четвертой степени его температуры. Теперь достаточно было установить, в какой степени реальное тело можно уподобить абсолютно черному, и все дальнейшее становилось делом обычной арифметики.

Взявшись за простейшие виды теплопередачи, теоретики добились в их изучении успеха лишь в той мере, в какой сумели отвлечься от конвекции, при которой тепло передается путем перемешивания горячих и холодных слоев жидкости или газа. Конвекция, таким образом, неразрывно связана с механическим движением жидкостных и газовых потоков, изучением которых занимается гидромеханика. Взятые даже сами по себе течения жидкостей и газов — настолько сложны и труднодоступны для изучения, что дополнительное наложение на них еще и тепловых процессов всегда заставляло теоретиков отказываться от исследования конвекции.

Заниматься ей вплотную приходилось инженерам и ученым-прикладникам. У них просто не было другого выхода, ибо именно конвекция — главный механизм теплопередачи в металлургическом производстве, в отопительных системах, в котельном деле. Без конвекции не могли бы охлаждаться радио-и электроприборы, тормоза, компрессоры. Без конвекции немыслимы холодильные устройства, морозильные камеры, химические и нефтеперерабатывающие устройства, энергетические установки.

Впрочем, нельзя сказать, чтобы теоретики совсем ничего не дали учению о конвекции. Напротив, еще Ньютон установил основное уравнение конвективного теплообмена. Он считал, что количество теплоты, переданное этим процессом, пропорционально поверхности нагрева, разности температур и коэффициенту теплоотдачи. Но основное заблуждение Ньютона состояло в том, что этот самый коэффициент он считал постоянным. В действительности же нет на свете величины, более причудливо зависящей от десятков факторов. Здесь и теплопроводность рабочего тела, и его вязкость, и плотность, и скорость, и теплоемкость. Иногда на величину коэффициента теплоотдачи влияет разность температур между стенкой и рабочим телом. У трубки, расположенной вдоль потока, теплообмен идет не так, как у трубки, расположенной поперек, и т. д.

Но сколь ни многочисленны эти факторы, все они влияют на конвективный теплообмен лишь постольку, поскольку влияют на пограничный слой. Эта невидимая рубашка, окутывающая любое тело, погруженное в жидкость или газ, надежная защита против теплопередачи. И чем вязче жидкость, чем меньше ее плотность, тем труднее сдуть с поверхности тела эту рубашку. Один из механизмов сдувания пограничного слоя возникает автоматически и знаком каждому по работе печного отопления. Порции воздуха близ стенки печки, нагреваясь за счет теплопроводности, становятся легче и поднимаются вверх, на их место подтекают новые порции холодного воздуха — так возникает свободная конвекция. Скорости воздуха здесь очень малы, толщина пограничного слоя — около сантиметра. Поэтому за 1 час 1 м 2поверхности при разности температур в 1 °C передает около 5–8 ккал.

Свободная конвекция сильно зависит от плотности рабочего тела. На высоте 20 км, где плотность воздуха меньше, чем на поверхности земли, в 18,5 раза, коэффициент теплоотдачи оказывается вчетверо меньшим. При еще более сильном разряжении архимедова сила, благодаря которой нагретый воздух всплывает вверх, может стать недостаточной для преодоления гидравлического сопротивления, и тогда механизм свободной конвекции перестает действовать.

Зато в плотной среде этот механизм действует весьма энергично. Свободная конвекция в воде — например, при нагревании воды в чайнике — дает коэффициенты теплоотдачи от 200 до 1000 ккал/ч м 2°С. А когда вода начинает кипеть, когда паровые пузыри дробят, сдувают, срывают пограничный слой, когда, всплывая, они перемешивают горячие и холодные порции жидкости, коэффициент теплоотдачи может достигать 40–45 тыс. ккал/чм 2°С. Обратный процесс — конденсация пара идет еще интенсивнее. Здесь коэффициент теплоотдачи достигает 100–120 тыс. ккал/ч•м 2•°С. Но и в том и в другом случае необходимо соблюдать одно условие: жидкость при кипении должна соприкасаться непосредственно с нагревающей поверхностью, а пар при конденсации должен соприкасаться непосредственно с поверхностью охлаждающей. Стоит поверхности покрыться при кипении непрерывной паровой, а при конденсации непрерывной жидкостной пленкой — и теплоотдача резко падает.

Толщину пограничного слоя можно уменьшить принудительным образом, обдувая горячую стенку воздухом с помощью вентилятора. Достаточно, скажем, повысить скорость до 5 м/с, и коэффициент теплоотдачи с 8 ккал/чм 2°С при свободной конвекции поднимается до 30 ккал/ч•м 2•°С. При такой принудительной конвекции все, что способствует турбулизации — завихрениям в потоке, увеличивает коэффициент теплоотдачи. В этом смысле шероховатые стенки лучше, чем идеально гладкие, поперечное обтекание труб лучше, чем продольное, тонкие трубки лучше, чем толстые.

До сих пор мы рассматривали механизмы передачи тепла в отрыве один от другого. Но на практике такие случаи чрезвычайно редки. Гораздо чаще на практике приходится сталкиваться с совокупным действием всех трех механизмов теплопередачи. Действием, которое делает процессы в окружающем нас мире необыкновенно сложными, необыкновенно трудными для научного анализа, но зато и необыкновенно разнообразными, богатыми и интересными для наблюдения и размышления возможностями…

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Герман Смирнов читать все книги автора по порядку

Герман Смирнов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Под знаком необратимости (Очерки о теплоте) отзывы


Отзывы читателей о книге Под знаком необратимости (Очерки о теплоте), автор: Герман Смирнов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x