Герман Смирнов - Под знаком необратимости (Очерки о теплоте)
- Название:Под знаком необратимости (Очерки о теплоте)
- Автор:
- Жанр:
- Издательство:Знание
- Год:1977
- Город:М.,
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Герман Смирнов - Под знаком необратимости (Очерки о теплоте) краткое содержание
Автор в живой увлекательной форме показывает пути становления принципов термодинамики, судьбу ее творцов, рассказывает о проблемах, которые были разрешены этой наукой в прошлом и над которыми специалисты работают сейчас.
Брошюра рассчитана на широкий круг читателей.
Под знаком необратимости (Очерки о теплоте) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Сделать все это он смог бы лишь в том случае, если бы он состоял из частиц, размер которых во столько раз меньше размера молекул, во сколько молекула меньше человека. По данным английского физика Фурнье Дальба, размеры этих частиц должны быть примерно в 10 10раз меньше, чем молекулы. А это означает, что в таком случае демон Максвелла принадлежал бы совершенно иному миру — инфрамиру, как называл его Дальб. Если бы в этом, подчеркиваем, гипотетическом мире существовало, если так можно выразиться, инфратепловое движение, демон мог бы обрести зрение, ибо стали бы возможны необратимые процессы, необходимые для работы органов чувств. В таком мире можно было бы и получать работу от системы, которая нам представляется находящейся в термодинамическом равновесии. Вопрос только в том, возможен ли такой мир. Ведь тогда можно предположить и существование «супра-мира», для обитателей которого планеты все равно что для нас молекулы. Они могут считать: никакой энергии нельзя получить от движущихся крохотных на их взгляд планет, от которых мы получаем энергию запросто — например с помощью приливных станций, использующих энергию вращения Луны вокруг Земли.
Хотя демон Максвелла изгоняется не тем путем, который рисовался многим ученым, их исследования оказались очень важными для науки, заложив основу современной теории информации. Но поразительнее всего то, что в результате их многолетних усилий лишь постепенно прояснялась картина, которую русский физик Н. Умов ясно представлял себе еще в 1901 году. В своей статье «Физико-механическая модель живой материи» он писал:
«Без затухания, без излучения, словом — без рассеяния энергии, ни один орган не мог бы исполнять своего назначения и не мог бы иметь прочного существования. Если бы световые вибрации сохранялись в сетчатой оболочке нашего глаза, мы имели бы постоянно возрастающее ощущение блеска и в результате — отсутствие отчетливости ощущений и слепоту. То же самое мы могли бы сказать и о барабанной перепонке, если бы в ней сохранялась энергия звуковых волн, падающих на нее в течение нашей жизни…
Следовательно, энергия, пробегающая от наших органов чувств к центральным частям нервной системы, должна затухнуть, т. е. излучиться, но должна в то же самое время оставить след. Такой след на языке физики есть запись энтропии: „…Записи энтропии, накопляясь, сохраняют свою раздельность, они образуют память, основу психической деятельности. Без закона энтропии психическая деятельность была бы невозможна…“»
Хотя физики позднейшего времени пришли к идеям Умова с большим запозданием, они пришли к ним на ином уровне подготовки. То, что Умов утверждал лишь умозрительно, они могли подтвердить расчетами. И расчеты эти показали, как далеки от истины были люди прошлого столетия, считавшие, что подумать легче, чем сделать; что рассчитать легче, чем построить; что вообще добыча и обработка информации легче, чем добыча и обработка материалов или энергии.
Грубые процессы трения и теплообмена, также, казалось бы, далекие от тонких «духовных» процессов измерения и расчета, в действительности оказались необходимыми условиями их существования. Можно и нужно стремиться к максимальному снижению потерь в наших измерительных и вычислительных устройствах, но мы должны ясно понимать, что тепловыделение в них не только помеха, но и принципиально необходимый и свойственный таким операциям процесс. Вот почему эфемерная точность измерений и расчетов может порой потребовать колоссальных расходов энергии, значительно превышающих расходы на плавление металлов, перевозку и подъем тяжелейших грузов, возделывание земли.
По подсчетам французского ученого Л. Бриллюэна, для измерения длины с точностью до 10 -50см потребовалась бы энергия, равная 210 34эрг. Поглощение одного-единственного кванта с такой энергией в процессе измерения привело бы к мгновенному взрыву лаборатории, а заодно и всей Земли. Не менее неожиданными оказываются и расходы энергии на расчетные работы. По данным А. Шлютера, для расчета молекулы метана требуется провести вычисления в 10 42точках. Если даже в каждой точке нужно выполнить всего 10 операций и вести вычисления при сверхнизкой температуре, то и тогда для расчета молекулы метана потребуется электроэнергия, производимая всеми электростанциями земного шара в течение столетия!
А демон Лапласа? Да прежде чем он мог бы сказать, что произойдет через секунду, он развалил бы нашу Землю на мелкие куски!
Нигде, пожалуй, не было высказано столько разнообразных и разноречивых формулировок, сколько в попытках дать определение понятия жизнь. Одна из первых принадлежит французскому философу XVII века Р. Декарту, который с безбоязненной последовательностью проводил мысль: живой организм есть механический автомат, в котором все процессы регулируются и управляются чисто механически с помощью клапанов, рычагов, заслонок. Спустя сто лет то, что Декарт рассматривал как чисто теоретическую возможность, стало реальностью. В веке XVIII началось повальное увлечение изготовлением кукол-автоматов, способных выполнять целесообразные действия: играть на клавесине, рисовать, передвигать шахматные фигуры. В наши дни человекообразные роботы могут выполнять задачи и посложнее: отвечать на телефонные звонки, давать всевозможные справки, передвигаться, разговаривать. Они даже могут приобретать некоторый практический опыт в процессе «жизни». Но разве решится кто-нибудь утверждать, что эти куклы и эти роботы — живые? Значит, способность передвигаться, рисовать и вообще производить целесообразные действия еще не может служить верным признаком живой материи.
Действіительно, случись ситуация посложнее, начнись, скажем, в помещении пожар, живой человек сразу сообразит, что сделать для своего спасения, а кукла-автомат будет продолжать играть на клавесине, пока не сгорит. Так может в этом характерный, признак — в самосохранении? Но в таком случае следует признать живым и кусок металла, который на воздухе покрывается слоем окиси, предохраняющей его от дальнейшего разрушения.
Некоторые ученые пыталась определить жизнь как процесс приспособления системы к окружающей среде, как непрерывное приноравливание ее внутренних отношений к внешним. Но и это определение недостаточно: существуют сотни систем регулирования, приводящих все внутренние процессы в машине к равновесию с внешней нагрузкой. И разве от этого они становятся живыми?
Были и такие специалисты, которые считали: секрет жизни — в способности к размножению. Разве это свойство не является коренным, фундаментальным признаком жизни? Разве оно встречается в неживой природе? Однако не так давно, в 1959 году, американский ученый Л. Пенроуз показал, что можно создать чисто механические самовоспроизводящиеся системы, не имеющие ничего общего с живыми существами…
Читать дальшеИнтервал:
Закладка: