Крис Импи - Чудовища доктора Эйнштейна [litres]
- Название:Чудовища доктора Эйнштейна [litres]
- Автор:
- Жанр:
- Издательство:Л Array
- Год:2020
- Город:М
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Крис Импи - Чудовища доктора Эйнштейна [litres] краткое содержание
История астрофизики предстает как череда потрясающих открытий, сделанных несколькими поколениями увлеченных и талантливейших ученых, сумевших описать прошлое, настоящее и будущее космического пространства, вычислить приблизительное местоположение ближайших черных дыр и предположить, что ждет Вселенную через миллионы лет.
Живое, увлекательное повествование и подробные объяснения делают книгу понятной для любого читателя – от ученого-физика до школьника.
Чудовища доктора Эйнштейна [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
148
Я писал диссертацию о блазарах, которыми увлекся, потому что они обеспечивали лучшую видимость центрального водоворота. К каждому сеансу я готовил «актуальный список» из нескольких десятков объектов, и наблюдение за ними через малые телескопы выявило признаки необычной активности. Иногда объект оказывался пустышкой, пятнышком света, мелким, как мельничный пруд. В других случаях обнаруживалась центральная черная дыра, объедавшаяся газом и звездами и исторгавшая высокоэнергетическое излучение и электроны, распространяющиеся со скоростью 99,999 % скорости света. Как вымышленного рассказчика из новеллы Эдгара По, меня притягивала пугающая красота глубокого и беспощадного гравитационного колодца.
149
M.A. Orr and I. W.A. Browne, “Relativistic Beaming and Quasar Statistics,” Monthly Notices of the Royal Astronomical Society 200 (1982): 1067–80. Если релятивистский джет направлен близко к лучу зрения, его поток легко может увеличиться в 1000 раз. Противоположный джет быстро движется прочь от наблюдателя, поэтому происходит его ослабление; в результате наблюдатель видит односторонний джет. Распространяющееся радиоизлучение не является частью релятивистского джета, и потому его поток не затронут этим эффектом.
150
Развитие этой идеи можно проследить по двум статьям, вышедшим с интервалом более 20 лет: R.J. Antonucci, “Unified Models for Active Galactic Nuclei and Quasars,” Annual Reviews of Astronomy and Astrophysics 31 (1993): 473–521; H. Netzer, “Revisiting the Unified Model of Active Galactic Nuclei,” Annual Reviews of Astronomy and Astrophysics 53 (2015): 365–408.
151
Самым знаменитым изображением этого мифа является картина Тинторетто «Происхождение Млечного Пути» (1575), хранящаяся в Национальной галерее в Лондоне. По большей части в западных странах люди живут в крупных городах и их пригородах, и световое загрязнение заслоняет им Млечный Путь. Я опрашиваю миллениалов, посещающих большой курс, который читаю в Аризонском университете: обычно только 10 % из них когда-либо видели Млечный Путь.
152
Z.M. Malkin, “Analysis of Determinations of the Distance between the Sun and the Galactic Center,” Astronomy Reports 57 (2013): 128–33.
153
W.M. Goss, R.L. Brown, and K.Y. Lo, “The Discovery of Sgr A*,” in “Proceedings of the Galactic Center Workshop – The Central 300 Parsecs of the Milky Way,” Astronomische Nachrichen , supplementary issue 1 (2003): 497–504.
154
M.J. Rees, “Black Holes,” Observatory 94 (1974): 168–79.
155
Инфракрасные датчики часто создавались для военных целей – например, для отображения места боевых действий в ночное время и отслеживания целей по тепловому излучению, что замедлило внедрение датчиков в гражданской и исследовательской сферах. Кроме того, инфракрасное изображение должно работать с тепловым фоном, в миллионы раз более мощным, чем оптическое излучение ночного неба. История вопроса: G.H. Rieke, “History of Infrared Telescopes and Astronomy,” Experimental Astronomy 125 (2009): 125–41. История разработки датчиков: A. Rogalski, “History of Infrared Detectors,” Opto-Electronics Review 20 (2012): 279–308. Оптическая астрономия совершила большой рывок в конце 1970-х гг., когда приборы с зарядовой связью (ПЗС) были перемещены из исследовательских лабораторий в обсерватории.
156
Скучивание изображений в области плотного расположения звезд или ровное распределение света в изображении галактики возникает, когда изображения существенно превышают размеры самих звезд. Проходя через атмосферу Земли, свет звезд существенно размывается независимо от размера источника света. Звезды в нашей части Млечного Пути отдалены друг от друга и почти никогда не сталкиваются; расстояние между ними в миллионы раз больше их размера. Даже в центральной области Млечного Пути интервалы между звездами в десятки тысяч раз больше их самих, и их слияния почти никогда не происходят.
157
Немецкая группа: A. Eckart and R Genzel, “Observations of Stellar Proper Motions Near the Galactic Centre,” Nature 383 (1996): 415–17; A. Eckart and R. Genzel, “Stellar Proper Motions in the Central 0.1 pc of the Galaxy,” Monthly Notices of the Royal Astronomical Society 28 (1997): 576–98. Американская группа: A.M. Ghez, B.L. Klein, M. Morris, and E.E. Becklin, “High Proper Motion Stars in the Vicinity of Sagittarius A*: Evidence for a Supermassive Black Hole at the Center of our Galaxy,” Astrophysical Journal 509 (1998): 678–86.
158
Цит. в: http://www.pbs.org/wgbh/nova/space/andrea-ghez.html.
159
Райнхард Генцель объясняет, почему так важно, чтобы в непосредственной близости имелась массивная черная дыра, которая в тысячи раз ближе любой другой активной галактики или квазара: «Центр нашей Галактики – это уникальная лаборатория, где мы можем изучать фундаментальные процессы сильной гравитации, звездной динамики и звездообразования, в высшей степени актуальные для ядер всех остальных галактик, причем с уровнем детализации, который никогда не будет доступен за пределами нашей Галактики». Цит. в: http://www.universetoday.com/22104/beyond-any-reasonable-doubt-a-supermassive-black-hole-lives-in-centre-of-our-galaxy/.
160
Неуверенность Андреа Гез как молодого ученого давно осталась в прошлом. Теперь Андреа – суперзвезда и образец для подражания среди молодых женщин, занимающихся астрономией. Гез не было и 40 лет, когда ее избрали в Национальную академию наук, в 2008 г. она получила стипендию Макартура, считающуюся «призом для гениев». Слава никак на нее не повлияла, и она охотно рассказывает, что получает такое же удовольствие от науки, как в раннем детстве, когда она собирала пазлы: «Научные исследования – чудесная стезя, ведь стоит начать работать над одним вопросом, находишь не только ответ, но и новые загадки. Думаю, это мной и движет, всегда есть вопросы без ответов, новые загадки».
161
F. Roddier , Adaptive Optics in Astronomy (Cambridge, UK: Cambridge University Press, 2004).
162
A.M. Ghez et al., “Measuring Distance and Properties of the Milky Way’s Supermassive Black Hole with Stellar Orbits,” Astrophysical Journal 689 (2008): 1044–62; and S. Gillesen et al., “Monitoring Stellar Orbits Around the Massive Black Hole in the Galactic Center,” Astrophysical Journal 692 (2009): 1075–1109.
163
S. Gillesen et al., “A Gas Cloud on its Way Towards the Supermassive Black Hole in the Galactic Centre,” Nature 481 (2012): 51–54.
164
S. Doeleman et al., “Event-Horizon Scale Structure in the Supermassive Black Hole Candidate at the Galactic Centre,” Nature 455 (2008): 78–80.
165
A. Boehle et al., “An Improved Distance and Mass Estimate for Sgr A* from Multistar Orbit Analysis,” Astrophysical Journal , 830 (2016): 17–40.
166
M. Schmidt, “The Local Space Density of Quasars and Active Nuclei,” Physica Scripta 17 (1978): 135–36.
167
D. Lynden-Bell, “Galactic Nuclei as Collapsed Old Quasars,” Nature 223 (1969): 690–94.
168
Формула радиуса сферы гравитационного влияния: Rg = GM/v2 , где М – масса черной дыры, а v – дисперсия, или разброс скоростей звезд в пределах этой сферы, обусловленный как черной дырой, так и самими звездами. На основании наблюдаемых масштабных соотношений между массой черной дыры и распределением скоростей звезд получаем Rg ? 35 ( M /10 9) 1/2парсек.
169
Объединяя формулу радиуса сферы гравитационного влияния Rg = GM/v2 с формулой радиуса Шварцшильда RS = GM/c2 , получаем Rg/RS = (c/v)2 , что составляет около 10 6для массивной галактики, где v = 200–300 км/c.
Читать дальшеИнтервал:
Закладка: