Говерт Шиллинг - Складки на ткани пространства-времени [Эйнштейн, гравитационные волны и будущее астрономии] [litres]

Тут можно читать онлайн Говерт Шиллинг - Складки на ткани пространства-времени [Эйнштейн, гравитационные волны и будущее астрономии] [litres] - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство Литагент Альпина, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Складки на ткани пространства-времени [Эйнштейн, гравитационные волны и будущее астрономии] [litres]
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Альпина
  • Год:
    2019
  • Город:
    Москва
  • ISBN:
    978-5-0013-9055-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Говерт Шиллинг - Складки на ткани пространства-времени [Эйнштейн, гравитационные волны и будущее астрономии] [litres] краткое содержание

Складки на ткани пространства-времени [Эйнштейн, гравитационные волны и будущее астрономии] [litres] - описание и краткое содержание, автор Говерт Шиллинг, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Складки на ткани пространства-времени [Эйнштейн, гравитационные волны и будущее астрономии] [litres] - читать онлайн бесплатно ознакомительный отрывок

Складки на ткани пространства-времени [Эйнштейн, гравитационные волны и будущее астрономии] [litres] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Говерт Шиллинг
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
_________

Разумеется, поиск гравитационных волн осложняют многие другие проблемы.

Среди них с большим отрывом лидируют: захлопнувшаяся дверь или проехавший грузовик, шаги людей поблизости, промышленная деятельность в соседнем городе, крохотные изменения температуры, отдаленная гроза, влияющая на молекулы воздуха, лесозаготовки вблизи обсерватории (в случае LIGO в Ливингстоне), удары тихоокеанских волн о берег на юге штата Вашингтон (в случае LIGO в Хэнфорде), микросейсмическая активность – список можно продолжить. Зеркала требуют максимально возможной изоляции от этого «сейсмического шума», который не позволит выделить крайне слабый эффект проходящей гравитационной волны.

Огромные усилия были затрачены на разработку хитроумных систем подвеса зеркал. Чтобы изолировать зеркала от внешних колебаний, были применены практически все известные приемы. Вибрационные датчики подают входной сигнал на самонастраивающиеся системы демпфирования, противодействующие колебаниям почвы, – примерно так же устроены микрофоны с шумоподавлением. Дальнейшую изоляцию обеспечивают сложные системы свободно свисающих плоских пружин и амортизаторов. Самым эффективным средством защиты является маятниковый механизм.

Демпфирующую способность маятника продемонстрирует очень простой эксперимент. Возьмите тонкую веревку или леску около метра длиной. Привяжите к ручке тяжелой кофейной чашки. Поднимите веревку за свободный конец, чтобы чашка повисла неподвижно. Если медленно повести конец веревки влево или вправо, чашка неохотно последует за движением, если же перемещать конец веревки быстро, чашка вообще едва шелохнется. Система работает еще лучше, если другой веревкой привязать под первой чашкой вторую: быстрые перемещения верхнего конца подвеса не оказывают видимого влияния на нижнюю чашку. Аналогично подвешенное зеркало удается изолировать от высокочастотных вибраций в окружающем пространстве. В LIGO применяется четырехэтапная система подвеса. Достоинство первое: зеркала являются толстыми и тяжелыми – 34 см в диаметре, толщиной 20 см и весом около 40 кг. Достоинство второе: они висят на проволоке минимально возможной толщины (0,4 мм) из плавленого кварца – особого стекла, отличающегося огромной прочностью. Достоинство третье: зеркала имеют чрезвычайно высокий уровень чистоты и простоты – зеркала LIGO представляют собой тщательно отполированные цилиндры из аморфного кварца.

Очевидно, избавиться от всех вибраций невозможно. Всегда будет какой-то неподавленный сейсмический шум, сколь угодно малые остаточные движения зеркал. Для полной уверенности в том, что чрезвычайно слабый сигнал гравитационной волны будет опознан, нужны как минимум два одинаковых детектора, разнесенные на сотни или даже тысячи километров. Фоновый шум в двух обсерваториях будет разным, а любой сигнал пришедшей из космоса гравитационной волны – одинаковым. Возможны мелкие различия в деталях в зависимости от направления источника сигнала и относительной ориентации двух интерферометров. Но обе лаборатории, в Ливингстоне и в Хэнфорде, должны зарегистрировать одну и ту же гравитационную волну в интервале сотой доли секунды. (В действительности с 2002 по 2010 г. проходящая гравитационная волна должна была регистрироваться тремя инструментами. Не многие знают, что в Хэнфорде изначально было два отдельных, совершенно независимых интерферометра: один имел плечи в 4 км, другой в два раза короче, те и другие размещались в общих туннелях.)

Незачем говорить, что лазер, светоделитель и фотодетектор также должны быть максимально изолированы от внешних вибраций. Более того, все чувствительные части интерферометра заключены в гигантские вакуумные резервуары. Даже из 4-километровых плеч – стальных труб, внутри которых переотражаются пучки лазерного излучения, – откачан весь воздух. Недопустимо, чтобы зеркала дрожали вследствие бомбардировки молекулами воздуха. Нельзя также допустить рассеяния лазерного излучения молекулами воздуха и крохотными частицами пыли. Система глубокого вакуума LIGO объемом около 9000 куб. м является одной из крупнейших в мире.

Еще одна потенциальная проблема – это лучевое давление, оказываемое пучками света лазеров на зеркала. Есть также «тепловой шум» – крайне слабые движения молекул в отражающем покрытии зеркал при нормальной температуре окружающей среды. Разумеется, слабо изогнутая поверхность зеркал должна быть отполирована максимально чисто, поскольку малейшие неровности уничтожат когерентность лазерного излучения.

Список потенциальных источников шума далеко не полон, я лишь пробежался по верхам. Все эти эффекты грозят помешать регистрации гравитационных волн, но все и каждую из проблем ученые и инженеры смогли решить или обойти.

Дополнительные подсистемы интерферометра еще больше увеличивают - фото 12

Дополнительные подсистемы интерферометра еще больше увеличивают чувствительность. Например, лазерный «чистильщик» (официальное название – фильтр входного сигнала) гарантирует максимально возможную чистоту и стабильность света лазера. Волны, входящие в туннели, должны иметь в точности одинаковую длину и быть идеально когерентными.

Еще один обязательный элемент – зеркало рециркуляции мощности. Полагаю, вы помните, что происходит, когда пучки лазерного излучения, возвращающиеся из двух плеч L-образной конструкции, снова встречаются на светоделителе: они нейтрализуют друг друга в одном направлении (к темному порту) и взаимно усиливаются в другом (в направлении лазера). Таким образом, во время эксплуатации в штатном режиме довольно много лазерного излучения возвращается туда, где возникло. Не использовать эту мощность лазерной установки означало бы транжирить ресурсы. Зеркало рециркуляции мощности отправляет свет обратно в интерферометр. В результате еще больше фотонов носятся взад-вперед по туннелям, а чем выше мощность лазерного излучения, тем выше точность измерений.

Намного меньшее количество света, который время от времени попадает в темный порт инструмента, также идет в дело, отражаясь обратно в плечи интерферометра. Этот достаточно новый процесс называется рециркуляцией сигнала. Ученые даже экспериментируют с так называемым сжатым светом – хитростью из области квантовой оптики, в которой принцип неопределенности Гейзенберга оборачивается нам на пользу. Не волнуйтесь, если вы не вполне его понимаете, этим могут похвастать немногие физики. Важен результат – еще большая точность.

Большая наука, например физика гравитационных волн, дело непростое. Резонансные антенны Джо Вебера были весьма продвинутыми – один из собственных детекторов Вебера ныне выставлен перед входом в обсерваторию LIGO в Хэнфорде, – но создание действующего интерферометра для регистрации волн Эйнштейна представляет собой задачу совершенно другого уровня. Все здесь является выходом на пределы возможностей науки и технологии. Лазеры на алюмоиттриевом гранате с примесью неодима (Nd: YAG), фильтры входного сигнала, светоделители, система сверхглубокого вакуума, сверхгладкие кремниевые зеркала, антивибрационные системы шумоподавления, рециркуляция мощности и сигнала, чувствительные фотодетекторы, невероятно точные измерения – все должно функционировать идеально согласованно и безошибочно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Говерт Шиллинг читать все книги автора по порядку

Говерт Шиллинг - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Складки на ткани пространства-времени [Эйнштейн, гравитационные волны и будущее астрономии] [litres] отзывы


Отзывы читателей о книге Складки на ткани пространства-времени [Эйнштейн, гравитационные волны и будущее астрономии] [litres], автор: Говерт Шиллинг. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x