Говерт Шиллинг - Складки на ткани пространства-времени [Эйнштейн, гравитационные волны и будущее астрономии] [litres]
- Название:Складки на ткани пространства-времени [Эйнштейн, гравитационные волны и будущее астрономии] [litres]
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2019
- Город:Москва
- ISBN:978-5-0013-9055-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Говерт Шиллинг - Складки на ткани пространства-времени [Эйнштейн, гравитационные волны и будущее астрономии] [litres] краткое содержание
Складки на ткани пространства-времени [Эйнштейн, гравитационные волны и будущее астрономии] [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
MeerLICHT фактически сводит к нулю время отклика при поиске электромагнитных проявлений. MeerLICHT – это относительно небольшой, 65-сантиметровый, автоматический телескоп, установленный в южноафриканской обсерватории Сазерленд. Он запрограммирован всегда смотреть точно в том же направлении, что и MeerKAT – одна из южноафриканских обсерваторий-целеуказателей в составе SKA примерно в 250 км дальше на севере. Если радиотелескопу удастся наблюдать радиовсплеск (или другой транзиентный источник) с достаточно ярким оптическим проявлением, чтобы быть видимым, робот-телескоп автоматически сделает снимок. Когда важна скорость, самое лучшее – действовать одновременно.
Казалось бы, это многообещающая стратегия обнаружения оптических проявлений гравитационных волн. Однако трудно добиться, чтобы оптический телескоп всегда смотрел в одном направлении с такими детекторами волн Эйнштейна, как LIGO и Virgo. Дело в том, что LIGO и Virgo имеют неизбирательную чувствительность – они зарегистрируют достаточно сильные гравитационные волны независимо от того, с какой стороны они пришли на Землю. И разумеется, чувствительные оптические телескопы не могут постоянно осматривать все небо. Поле зрения телескопа обычно намного меньше видимого размера полной Луны, поэтому астрономам приходится мириться с невозможностью одновременно смотреть во все стороны.
Очевидное решение – система оповещения, разработанная для LIGO и Virgo. Как только зарегистрирована вероятная гравитационная волна, астрономам сообщают, в каком направлении искать ее источник, чтобы они могли задействовать телескопы и космические обсерватории. В принципе, все это можно автоматизировать. Потоки данных лазерного интерферометра постоянно проверяются алгоритмами регистрации. Если сигнал настолько сильный, что требует дальнейшего анализа, – как в случае GW150914 и GW151226, – примерное местоположение его источника в небе можно вычислить. Результаты рассылаются по интернету всем наблюдателям, заключившим официальное соглашение с коллаборацией LIGO – Virgo. Если они используют робот-телескоп, то первые изображения возможного электромагнитного проявления можно получить в течение нескольких минут после регистрации волны Эйнштейна.
Астрономы много размышляли о том, какими именно электромагнитными проявлениями может сопровождаться гравитационная волна и сколько времени они могут быть видимыми. Чтобы ответить на этот вопрос, сначала нужно узнать, какие космические события порождают наблюдаемые гравитационные волны.
Существующие лазерные интерферометры восприимчивы к гравитационным волнам частотой примерно от 10 до 1000 Гц. Такие волны излучаются главным образом при столкновениях и слияниях нейтронных звезд и ЧД. Эти события «видимы» для LIGO и Virgo на больших расстояниях. Со временем, когда усовершенствованные детекторы достигнут полной проектной чувствительности, они смогут наблюдать слияния нейтронных звезд на расстоянии до нескольких сотен миллионов световых лет. В случае столкновения нейтронной звезды и ЧД это расстояние намного превышает миллиард световых лет, поскольку ЧД более массивна. Слияние двух достаточно массивных ЧД можно наблюдать с дистанции до нескольких миллиардов световых лет.
Что можно надеяться увидеть в оптический телескоп или наблюдать в инфракрасном, рентгеновском и радиодиапазоне? Это зависит от обстоятельств. При «чистом» слиянии ЧД не будет никакого электромагнитного излучения. Это событие – «шторм в ткани пространства-времени», говоря словами Кипа Торна. Нет никакого вещества: атомов, молекул – ничего, что могло бы испускать какое бы то ни было излучение. Слияние ЧД может сообщить о себе Вселенной только в форме гравитационных волн.
Поэтому охотники за электромагнитными проявлениями были немного разочарованы тем, что источником GW150914 стали две соединившиеся ЧД. В области столкновения этих космических объектов могло присутствовать некоторое количество материи в форме межзвездного газа и пыли, но немного, с учетом колоссального притяжения двух ЧД. В отсутствие материи, которая могла бы нагреться или стать средой для ударных волн, событие едва ли сопровождалось доступным для регистрации электромагнитным излучением (но астрономы все равно искали электромагнитные проявления).
Слияние нейтронных звезд или столкновение нейтронной звезды и ЧД – другое дело. Нейтронная звезда содержит обыкновенные ядерные частицы в количестве, по меньшей мере 1,4 массы Солнца. Результатом столкновения двух нейтронных звезд, скорее всего, станет ЧД, если же нейтронная звезда врежется в ЧД, то бóльшая часть ее массы просто исчезнет. Но в обоих случаях значительное количество материи может быть нагрето до экстремально высоких температур и выброшено в пространство со скоростью, составляющей существенную часть скорости света. Когда эта взрывная волна войдет в окружающее межзвездное вещество, каким бы оно ни было разреженным, мощные ударные волны создадут электромагнитное излучение в широком диапазоне частот. Считается, что столкновения с участием хотя бы одной нейтронной звезды сопровождаются впечатляющим космическим фейерверком.
Этим и обусловлена связь гравитационных волн и гамма-всплесков. Еще в начале 1990-х гг. некоторые астрофизики утверждали, что гамма-всплески могут вызываться слияниями нейтронных звезд в далеких галактиках. Это было задолго до составления шкалы расстояний для событий взрывного характера. Сегодня почти никто не сомневается, что слияния нейтронных звезд являются прародителями по крайней мере значительной части наблюдаемых гамма-всплесков.
Гамма-всплески можно разделить на две группы, представляющие разные категории космических феноменов. Короткие гамма-всплески длятся долю секунды, длинные – от нескольких секунд до двух минут. Длинные всплески – это, вероятно, невероятно мощные взрывы сверхновых, иначе называемые сверхъяркими сверхновыми. Они могут возникать, когда короткая жизнь очень массивных быстро вращающихся звезд оканчивается катастрофическим коллапсом и превращением в ЧД. Для объяснения коротких всплесков были предложены разные сценарии, среди которых с большим отрывом лидирует модель слияния с участием нейтронной звезды.
Сосредоточимся на коротких гамма-всплесках. При некоторых из них было зарегистрировано слабое рентгеновское и оптическое послесвечение. Оно длится намного дольше самого всплеска гамма-излучения – целый день и более. Казалось бы, это означает, что мы точно знаем, какие электромагнитные проявления гравитационных волн нужно искать. Ведь речь, возможно, идет об одном и том же физическом явлении – слиянии нейтронных звезд. Если выброс гравитационных волн тоже порождается слиянием с участием нейтронной звезды, разве не должна практически одновременно с ним происходить вспышка высокоэнергетического гамма-излучения, иногда сопровождающаяся слабым послесвечением?
Читать дальшеИнтервал:
Закладка: