Мартин Рис - Всего шесть чисел. Главные силы, формирующие Вселенную [litres]
- Название:Всего шесть чисел. Главные силы, формирующие Вселенную [litres]
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2018
- Город:Москва
- ISBN:978-5-0013-9019-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Мартин Рис - Всего шесть чисел. Главные силы, формирующие Вселенную [litres] краткое содержание
Всего шесть чисел. Главные силы, формирующие Вселенную [litres] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Начальная точка для такого анализа – это расширение Вселенной, описываемое с помощью чисел Ω, λ и Q. Результат очень чувствителен к этим трем ключевым числам, установленным (мы еще точно не уверены как) на самом раннем этапе существования Вселенной.
НАСТРОЙКА Q
Очевидно, что для образования галактик, их скоплений и сверхскоплений требуется достаточное количество темной материи во Вселенной, а также достаточное количество атомов. Значение числа Ω должно быть не слишком низким: во вселенной, где очень много излучения и мало чего-либо еще, тяготение никогда не сможет преодолеть давления. А число λ не должно быть таким высоким, чтобы космическое отталкивание преодолело тяготение до того, как сформируются галактики. Также должно иметься достаточное количество обыкновенных атомов, первоначально находящихся в рассеянном газе, чтобы сформировать все звезды во всех галактиках. Но мы уже видели, что нужно и кое-что еще, а именно изначальные неоднородности, которые должны стать «ростками» будущих структур.
Число Q измеряет разброс этих неоднородностей или «ряби». Почему Q составляет примерно 10 –5, по-прежнему загадка. Но его значение очень важно: будь оно намного меньше или намного больше, «ткань» нашей Вселенной была бы совсем иной и менее способствовала образованию жизни.
Если Q будет меньше 10 –5, но при этом другие космические числа не изменятся, то скоплениям темной материи потребуется больше времени, чтобы развиться, и они будут меньше и более разреженными. Получившиеся в результате галактики будут «анемичными», формирование звезд в них пойдет медленно и неэффективно, а «отработанная» материя улетит из галактики и не будет перерабатываться в новые звезды, которые могли бы образовать вокруг себя планетные системы. Если Q будет меньше 10 –6, газ вообще никогда не сконденсируется в связанные тяготением структуры, и такая вселенная навсегда останется темной, не имеющей ярко выраженных особенностей, даже если изначальная «смесь» атомов, темной материи и излучения была той же самой, что в нашей Вселенной.
С другой стороны, вселенная, где число Q будет значительно больше 10 –5 – где первоначальные неоднородности возникают с бо́льшим разбросом, – будет беспокойным и жестоким местом. Районы, по размеру превышающие галактики, сконденсируются гораздо раньше. Они не станут раздробляться на звезды, а вместо этого сожмутся в огромные черные дыры, каждая из которых будет гораздо тяжелее целого скопления галактик в нашей Вселенной. Весь сохранившийся газ будет таким горячим, что станет испускать интенсивные рентгеновские и гамма-лучи. Галактики (если и сумеют сформироваться) будут связаны гораздо сильнее, чем галактики в нашей Вселенной. Звезды будут находиться ближе друг к другу и сталкиваться слишком часто, чтобы вокруг них могли существовать стабильные планетные системы. (По тем же причинам планетные системы не могут существовать очень близко к центру нашей собственной Галактики, где звезды находятся в куда более плотных скоплениях по сравнению с нашим отдаленным районом.)
Тот факт, что число Q составляет 1/100 000, к слову сказать, значительно облегчает жизнь специалистов по космологии: нам гораздо легче понимать сущность явлений, чем в том случае, если бы Q было больше. Маленькое число Q гарантирует, что структуры малы по сравнению с горизонтом и что наше поле зрения достаточно велико, чтобы вместить множество независимых друг от друга участков, каждый из которых достаточно велик. Если Q будет намного больше, то сверхскопления сами объединятся в такие структуры, которые уйдут за горизонт (а не ограничатся, как в нашей Вселенной, размером примерно 1 % этой шкалы). Тогда нет никакого смысла говорить о средних, «сглаженных» свойствах нашей наблюдаемой Вселенной и невозможно будет определить такие числа, как Ω.
Малость Q, без которой специалисты по космологии не смогли бы добиться никаких успехов, до недавнего времени казалась приятной случайностью. Только сейчас мы начинаем понимать, что это не просто удобство для космологов; жизнь не могла бы развиться, если бы у Вселенной не было такой все упрощающей особенности.
ГЛАВА 9
НАША КОСМИЧЕСКАЯ СРЕДА ОБИТАНИЯ III: ЧТО ЛЕЖИТ ЗА ГОРИЗОНТОМ?
…Нет никакого сомнения, что мир сотворен не во времени, но вместе с временем. Ибо что происходит во времени, то происходит после одного и прежде другого времени, – после того, которое прошло, и прежде того, которое должно наступить; но никакого прошедшего времени быть не могло, потому что не было никакой твари, движение и изменение которой определяло бы время. Но несомненно, что мир сотворен вместе с временем… [34] Бл. Августин. О граде Божием. – М.: Харвест, АСТ, 2000.
НАСКОЛЬКО ДОСТОВЕРНА ИСТОРИЯ БОЛЬШОГО ВЗРЫВА?
Теорию Большого взрыва пытаются опровергнуть вот уже более 30 лет [35] На сегодняшний день – более 50 лет. – Прим. науч. ред.
. Различные данные могли доказать ее несостоятельность, если бы были иными. Вот пять из них.
● Астрономы могли обнаружить объект, содержание гелия в котором равняется 0 или имеет уровень ниже 23 % от содержания водорода. Это было бы фатальным для теории, поскольку термоядерная реакция с водородом может легко произвести гелий сверх того количества, которое было до появления галактик, но нет никакого способа превратить весь гелий обратно в водород.
● Фоновое излучение, так точно измеренное аппаратом COBE, могло иметь спектр, отличающийся от ожидаемого спектра «абсолютно черного тела» (или теплового равновесия) {18} 18 В частности, интенсивность излучения, измеренная аппаратом COBE в миллиметровых длинах волн, может быть слабее , чем предсказанная экстраполяция того, что было надежно определено в сантиметровых длинах волн. Многие процессы могут сопровождаться дополнительным излучением на миллиметровых волнах, например излучение от пыли или от звезд с очень сильным красным смещением, и поэтому мы не должны быть обескуражены тем, что на этих длинах волн излучение будет более интенсивным, чем у абсолютно черного тела. Сложнее будет объяснить более низкую температуру на миллиметровых волнах.
.
● Изучая нейтрино , физики могли обнаружить что-нибудь, несовместимое с Большим взрывом. В «огненном шаре» нейтрино должны были по численности превосходить атомы во много раз – примерно в миллиард, как и фотоны. Если бы каждый нейтрино весил хотя бы миллионную долю от веса атома, то они в целом составили бы слишком большую массу для ныне существующей Вселенной – даже бо́льшую, чем скрыта в темной материи. Как мы уже говорили в главе 6, реальная масса нейтрино (если она не равна нулю), по всей видимости, слишком низка, чтобы опровергнуть теорию. Но может выясниться, что она выше.
Читать дальшеИнтервал:
Закладка: