Вера Черногорова - Загадки микромира
- Название:Загадки микромира
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1973
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вера Черногорова - Загадки микромира краткое содержание
Об этом и о том, что у них общего и чем они отличаются друг от друга рассказывается в книге В. Черногоровой.
Загадки микромира - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
К сожалению, четкого ответа на этот вопрос не существует. Природа партонов не ясна. Одни предполагают, что партоны — пи- или ка-мезоны. Другие считают, что партоны подобны кваркам. Действительно, если им приписать дробный электрический заряд, то теоретические расчеты хорошо согласуются с экспериментом.
И все-таки нельзя считать доказанным существование кварков. Рассеяние быстрых электронов на нуклонах дает нам, как говорит Фейнман, лишь «моментальный снимок» составных точечных частиц в нуклоне. А по нему невозможно судить о том, как они должны выглядеть в свободном состоянии и какими свойствами должны обладать.
Хорошо знакомый нам нейтрон имеет разные свойства в зависимости от того, где он находится: в свободном состоянии или же, например, в любом атомном ядре. Ядро это стабильно, а извлеченный из него нейтрон нестабилен. Не проходит четверти часа, как он распадается на протон, электрон и нейтрино.
Кварк с дробным зарядом и большой массой тоже должен подвергнуться метаморфозе, если когда-нибудь очутится в свободном состоянии. Разве сморщенный комочек резины похож на красивый надутый шарик?
Какими окажутся партоны, если их удастся рассмотреть подробно, — неизвестно. И здесь открывается безбрежный простор для теоретического воображения!
Утраченные иллюзии
Он шел средь мрака неохватного
Вслед за звездой падучей,
Сквозь неопределенность квантовой
Механики грядущей.
Когда же следующий занавес
Внезапно был распахнут,
Он взял иной предел и заново
Смешал фигурки шахмат.
П. АнтокольскийВеликолепные фейерверки элементарных частиц вскоре перестали поражать воображение первооткрывателей. Регистрация каждого следующего резонанса — а число их перевалило за сотню — доставляла исследователям те же эмоции, которые владеют медицинской сестрой при взгляде на длинную очередь больных.
Если бы цель и задача физики микромира заключалась только в «выписывании паспортов» для все новых и новых частиц, то больше не о чем было бы и рассказывать.
«Человек осваивает Землю, и этот процесс непосредственно связан с расширением его знаний о законах природы», — писал физик-теоретик, лауреат Нобелевской премии Е. Вигнер. Следовательно, цель науки не только открытие и описание явлений и процессов, протекающих в природе. Главное — поиски закономерных связей между ними.
Несколько столетий назад были открыты и изучены три основных закона механики — закон сохранения энергии, закон сохранения импульса и закон сохранения момента количества движения. На эти три закона сохранения опирается вся классическая физика.

Открыв атомное ядро и элементарные частицы, ученые проникли в новую область природы. Здесь впервые обнаружилась ограниченность некоторых законов макромира. В микромире действовали свои, квантовые законы. Атомы и элементарные частицы тоже подчинялись трем великим законам сохранения, но описывались уже не механикой Ньютона, а механикой квантовой.
До начала XX века физики не подозревали, что существует прямая связь между тремя законами сохранения и такими простыми свойствами пространства и времени, как их однородность и одинаковость физических свойств по всем направлениям, называемая изотропностью.
Закон Ома для электрических цепей прекрасно выполняется как в московской школе, так и за тысячи километров от нее — в школах Индии. А почему этот, и любой другой, закон природы «работает» сегодня так же хорошо, как вчера, а завтра наверняка будет таким же, как и сегодня? Да все потому, что пространство и время, в которых мы живем, однородны. Их свойства везде и всегда одинаковы.
Мы никогда не обращаем внимания на это обстоятельство. Оно вроде бы нас и не касается. А судьбы законов природы — быть им или не быть? — прямо зависят от свойства однородности, симметрии, присущего пространству и времени.
Слово «симметрия» обычно вызывает ассоциацию только с образами геометрически симметричных предметов. Но понятие симметрии в общем смысле связано с единством двух противоположных моментов — сохранения и изменения. Симметрия — это сохранение каких-либо элементов по отношению к определенным изменениям.
После создания теории относительности и квантовой механики неожиданно выяснилось, что все три закона сохранения, которым подчиняются макромир и микромир, всего лишь следствия более общих положений, а именно: принципов симметрии пространства и времени! И с тех пор эти фундаментальные принципы природы заняли самую верхнюю ступеньку в иерархической лестнице физических понятий.
Сперва физики не сомневались в справедливости этих принципов. Но вдруг как гром с ясного неба возникла загадка «тета-тау», как ее записали в свои анналы физики. Суть этой загадки сводилась к единственному вопросу: одна частица или две?
Виновниками загадки стали тяжелые частицы ка-мезоны. Сразу же после их открытия ка-мезоны привлекли к себе пристальное внимание физиков и получили прозвище «странных» за феноменальную способность рождаться в сильных взаимодействиях между частицами, а распадаться — в слабых. В те мгновения, когда мезоны доступны наблюдению, ученые узнали о них не меньше удивительных историй, чем иной энергичный журналист о какой-нибудь знаменитой кинозвезде за много месяцев.
Обнаружилось, что под названием «ка-мезон» скрывается сразу три типа элементарных частиц. Одни из них нейтральны — ка-ноль-мезоны, другие имеют положительный — ка-плюс-мезоны, а третьи — ка-минус-мезоны — отрицательный электрический заряд.
История первая произошла с ка-плюс-мезонами. Обычно они распадаются на более легкие частицы несколькими способами, и в этом не было ничего удивительного. Удивление вызывало вот что. По теоретическим представлениям, два из этих способов распада были таковы, будто они принадлежали не одной и той же частице, а двум разным. Соблазн приписать эти способы распада одной частице упирался в табу, исходящее из еще одного общего закона, который называется законом сохранения пространственной четности.
Четность — это математическое понятие, и его трудно объяснить с помощью одних только физических представлений. Четность — свойство специальной волновой функции, которая в квантовой механике описывает состояние элементарной частицы. А закон сохранения пространственной четности означает, что параметр этот не должен меняться.
Неспециалисту эти слова мало что говорят. Но эпитет «пространственная» у слова «четность» уже намекает на то, что этот закон появляется в квантовой механике как прямое следствие неизменяемости пространства при его зеркальном отражении.
Читать дальшеИнтервал:
Закладка: