Вера Черногорова - Загадки микромира
- Название:Загадки микромира
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1973
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вера Черногорова - Загадки микромира краткое содержание
Об этом и о том, что у них общего и чем они отличаются друг от друга рассказывается в книге В. Черногоровой.
Загадки микромира - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Проверка теоремы Померанчука с помощью ка-ноль-мезонов (цель эксперимента) не гениальное открытие, а, как сказал руководитель группы И. Савин, «совершенно прозрачная вещь. Больше пятнадцати лет назад, как только была понята природа этих частиц, стало ясно, как с их помощью можно проверить основы теории. Но предполагаемый эксперимент был столь сложен, что лишь современный уровень развития экспериментальной техники сделал эту идею практически выполнимой».
Установка для проверки этой фундаментальной теоремы создана в Серпухове. Более десяти секунд понадобилось бы даже мастеру спорта, чтобы добежать от места рождения тяжелых нейтральных частиц в вакуумной камере ускорителя до конца всего экспериментального комплекса, растянувшегося почти на 100 метров в длину. Мы же давайте пройдем это расстояние спокойно, не торопясь, останавливаясь у самых главных узлов установки.
На первых пятидесяти метрах с нейтральными каонами ничего особенного не случается. Они проскакивают через несколько отклоняющих электромагнитов и магнитных линз, убирающих посторонние частицы, и ныряют в коллиматоры, формирующие их в пучок.

Мезонный канал, вдоль которого мы проходим дальше, «бережно» доводит максимально возможное количество частиц до мишени из жидкого водорода. Что происходит с долгоживущими ка-ноль-мезонами после купания в жидком водороде?
Относительно частиц с малой энергией было известно, что они обязаны превратиться в короткоживущие ка-ноль-мезоны. А теперь предстояло узнать, как поведут себя те же долгоживущие ка-ноль-мезоны, но уже с огромной энергией вламывающиеся в мишень. Если справедлива теорема Померанчука и частицы и античастицы, из которых состоят ка-ноль-мезоны, при больших энергиях практически одинаково взаимодействуют с протонами мишени, то короткоживущих мезонов должно появиться значительно меньше.
Физики предъявили массу требований к состоянию водорода в мишени. Он должен был иметь и постоянную температуру, и постоянную плотность, но самое главное — ни в коем случае не кипеть! Пузырьки, пронизывающие всю толщу мишени, — страшный враг, потому что исподволь меняют ее толщину, а учесть это изменение пока что невозможно. Не так-то просто удовлетворить всем этим требованиям даже в том случае, если объем жидководородной мишени невелик. Но в этом опыте для увеличения вероятности столкновения каонов с протонами необходимо было работать с мишенью длиною в три метра!
Трехметровую трубу из нержавеющей стали, наполненную жидким водородом, поместили в другую, диаметром около полуметра, и для предотвращения кипения откачали воздух из зазора между ними.
Но тогда возникла новая трудность. По условиям опыта нельзя чинить дополнительных препятствий ка-мезонам перед входом и выходом из мишени. А эти препятствия были в виде плотных торцевых стенок. Окна мишени пришлось закрыть лавсановыми пленками толщиной 120 микрон. Но тоненькая пленка прогибалась под давлением жидкого водорода в сторону вакуума. А допустить этого никак было нельзя — ведь из мезонного канала выходил пучок частиц, диаметр которого достигал нескольких сантиметров. Значит, для разных частиц длина водородной мишени была бы неодинаковой, а результаты эксперимента — неоднозначными.
Решение, как всегда, пришло неожиданно и оказалось совсем простым. Окна мишени сделали из двух слоев лавсана. Во внутренней пленке прокололи маленькую дырочку так, чтобы давление по обе стороны этого окна выравнивалось, а жидкий водород в просвет между окнами не проникал. Оригинальная конструкция окон и специально созданный для этой мишени стабилизатор давления позволили продолжительное время поддерживать количество водорода на пути частиц постоянным с точностью до 0,05 процента.
Миновав мишень с ее сложным криогенным хозяйством и двумя пультами управления, мы добираемся до места, где у физиков как будто остается одна-единственная задача. Здесь, в трех метрах от конца мезонного канала, надо просто подсчитать количество короткоживущих нейтральных мезонов, появляющихся из мишени. Их число прямо соответствует разности вероятностей взаимодействия ка-ноль- и анти-ка-ноль-мезонов с водородом. Не правда ли, кажется, ничего сложного здесь нет?
Но тяжелые короткоживущие ка-ноль-мезоны лишь на мгновение появляются из мишени и тотчас же распадаются на более легкие пи-плюс- и пи-минус-мезоны. И в этом главная трудность эксперимента. Теперь надо не просто зарегистрировать две новые частицы, но и доказать, что они ведут свое происхождение от первичного каона — короткоживущего ка-ноль-мезона. А решать эту задачу приходится в присутствии бесчисленного множества посторонних фоновых частиц, летящих как от ускорителя, так и от мишени.
По углу между пи-мезонами и по их энергии можно найти массу частицы-родительницы. Если она совпадает с массой ка-ноль-мезона, значит, вполне вероятно, что эти заряженные частицы те самые, на которые распался каон, то есть пи-мезоны. Для полной уверенности сравнивают направление движения частицы, подозреваемой в идентичности с ка-ноль-мезоном с направлением мезонного пучка, падающего на мишень. Оба эти направления должны совпадать.

Для всех этих измерений нужна такая экспериментальная установка, которая в миллиардные доли секунды среди миллионов частиц «узнала бы» нужные физикам и зафиксировала бы их координаты в пространстве с точностью до долей миллиметра! Хорошо бы еще видеть пролетающие частицы! Конечно, элементарные частицы увидеть нельзя. Но их следы — треки — ученые уже давно научились делать «видимыми» в фотографических эмульсиях. (Эмульсиями с успехом пользовались еще на заре развития физики микромира. С успехом пользуются ими и сейчас. Блок, или, как говорят физики, «ведро эмульсии», будет участвовать в опыте по обнаружению монополя Дирака на ускорителе в ЦЕРНе.)
Но, увы, для проверки теоремы Померанчука такой прибор не подходит, ибо его работой невозможно управлять. В последние годы в физике элементарных частиц появился новый прибор — искровая камера. Многие физические задачи, в том числе и задача с ка-ноль-мезонами, не могли быть решены без применения этого прибора.
Устройство искровой камеры несложно. В герметической коробке, заполненной инертным газом, размещены на некотором расстоянии друг от друга металлические пластинки или проволочки. Заряженная частица, пролетая между пластинками, оставляет за собой сорванные с атомов электроны и заряженные ионы. Высокое напряжение, приложенное к пластинкам, сообщает этим атомным осколкам дополнительную энергию, и они приобретают способность, в свою очередь, выбивать электроны из атомов. Новые электроны и ионы делают то же самое, и в результате образуется лавина — канал из ионизированного газа. Теперь путь разряду открыт, и в тех газовых промежутках, где пролетела частица, происходит пробой: возникают яркие искры, которые и делают путь частицы видимым или доступным для автоматических измерений.
Читать дальшеИнтервал:
Закладка: