Вера Черногорова - Загадки микромира
- Название:Загадки микромира
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1973
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вера Черногорова - Загадки микромира краткое содержание
Об этом и о том, что у них общего и чем они отличаются друг от друга рассказывается в книге В. Черногоровой.
Загадки микромира - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Вот ведь как бывает в физике — как в жизни. Ищешь одно, а находишь другое. Но зачем существуют эти мю-мезоны? Какая у них «специальность»? Куда девать мезонный кирпичик, подаренный щедрой природой?
Ситуация, в которой оказались физики, напоминала затруднительное положение любознательной крыловской мартышки, раздобывшей очки, но не знающей, что с ними делать.
Почти четыре десятилетия пытаются физики выявить особое дарование мю-мезона, но все их усилия пока что напрасны. Жизнь этой частицы изучена до мельчайших подробностей. Появилось даже новое научное направление, имеющее практическое применение, — мезохимия. Но какой же хитрый этот мю-мезон! Кто он? Неизвестно. Известно лишь, что в микромире он проявляет себя только в двести раз более массивным исполнителем роли электрона. Загадка мю-мезона до сих пор не разгадана.
Прошло двенадцать лет. И вот однажды при столкновении быстрых протонов с ядрами атомов обнаружилась еще одна частица. Тяжелее предыдущей, она имела все данные, которые позволяли ей претендовать на роль частицы Юкавы. Неравнодушная к нуклонам, новая частица в отличие от мю-мезонов бурно реагировала с атомными ядрами.
Восторгу физиков не было предела. Открытая частица — ее назвали пи-мезоном — полностью соответствовала тому образу, который ученые составили о переносчиках ядерных сил. Непрерывно перекидываясь мезонами, нуклоны в ядре оказываются связанными в единую группу так же, как связаны между собой артисты цирка — жонглеры, перебрасывающиеся одновременно несколькими предметами. Но если жонглеры в цирке получают вполне стабильный реквизит, то нуклоны перебрасываются мезонами, которые сами мгновенно испускают и поглощают. Нейтроны и протоны обмениваются между собой мезонами с положительным и отрицательным зарядом, а протоны с протонами и нейтроны с нейтронами — нейтральными…

В 1947 году открытие это завершилось вручением Хидэки Юкава Нобелевской премии.
К 1950 году мир представлялся устроенным из протонов, нейтронов, электронов, мю-мезонов, пи-мезонов, фотонов. Ученые знали, как из этих кирпичиков складывается гигантская пирамида макромира. И понимали, почему не разваливается на элементарные частицы любой кусок вещества.
Не знали только одного куда приложить мю-мезонный кирпичик?
В одну из последних ночей 1846 года немецкий астроном Иоганн Галле нашел в заранее указанной математиком Урбаном Леверье точке неба новую планету. Ее назвали Нептун. Это был триумф классической физики.
«Физика в наши дни, — писал в 1956 году американский ученый Филипп Моррисон, — ждет другого подобного открытия. Существует свой Нептун среди ее элементарных частиц — удивительная частица, упоминаемая физиками в любом обзоре, хотя до сих пор она еще не была открыта».

Какая же еще частица понадобилась физикам? И для чего она им была нужна?
После обнаружения нейтрона, протона и электрона казалось, что извечный вопрос о строении материи наконец решен. И вопрос этот можно было снять с повестки дня, если бы не возникло одно маленькое, но очень серьезное затруднение.
Нетрудно рассчитать энергию пули, вылетающей из ствола винтовки, — она всегда постоянна. Пуля при взрыве пороха в патроне уносит с собой определенную энергию заряда.
Нетрудно рассчитать энергию электрона, вылетающего из радиоактивного ядра. Энергия, освобождающаяся при распаде, как считали сорок лет назад, делится только между электронами и самим ядром. И делится всегда по строгому закону механики — обратно пропорционально их массам.
Но когда физики измерили энергию электронов, то растерялись. Такой картины никто не ожидал: электроны уносили из ядра меньше энергии, чем причиталось на их долю. Мало того, каждый раз количество этой энергии было разное.
Первой, как всегда, была мысль, что произошла ошибка. Ученые лихорадочно искали ее в собственных опытах. Для опровержения странных результатов ставились все новые и новые эксперименты. Но никакие ухищрения не помогали. Опыты упорно подтверждали, что часть энергии словно проваливается под землю.
Так родилась на свет нашумевшая история о «пропаже» энергии при бета-распаде ядер.
И вот тогда у некоторых физиков зародилась крамольная мысль: а может быть, в некоторых ядерных процессах закон сохранения энергии не выполняется? Мысль была настолько кощунственной, что ее прогоняли, о ней старались забыть.
Ученые были в замешательстве. И лишь один из них, швейцарец Вольфганг Паули, нашел удачный выход из затруднения и тем самым ликвидировал угрозу, нависшую над законом сохранения энергии.
В декабре 1930 года он отправил письмо на научный семинар в Тюбинген, заканчивающееся словами: «…не рискнув, не выиграешь; необходимо поэтому серьезно обсудить любой путь к спасению. Итак, мои дорогие радиоактивные дамы и господа, проверяйте и судите».
Паули предположил, что существует еще одна, не открытая еще частица, которая вылетает вместе с электроном при бета-распаде ядер. И между тремя участниками этого события — электроном, ядром и неизвестной частицей — энергия делится уже произвольным образом, точно так же как энергия пороха произвольно распределяется между дробинками, вылетающими из ружья.
И все сразу стало на свои места. Если электрон вылетал с меньшей энергией, то другую, недостающую часть энергии уносила с собой таинственная незнакомка.
Гипотезу Паули признали далеко не все. И начали тогда физики судить да рядить. С одной стороны, трудно было отказаться от фундаментального закона сохранения энергии. С другой стороны — волей-неволей приходилось вносить еще одну, да еще такую необычную, частицу в целиком и полностью укомплектованный атом.
Судите сами. Другие частицы как частицы. Их можно зарегистрировать в счетчике Гейгера, они оставляют следы в камере Вильсона. А нейтроны или гамма-кванты выдают свое присутствие, толкая протоны или выбивая из атомов электроны.
Но таинственная частица никак не давалась экспериментаторам. А Паули, словно подсмеиваясь над ними, уже заготовил «удостоверение», где значились основные приметы незнакомки: легкая, с массой, почти равной нулю, без электрического заряда — нейтральная.
Так это же «паспортные» данные нейтрино! «Что-то маленькое и нейтральное» — так переводится его название с итальянского на русский.
Прорезая массу плотного вещества, нейтрон проделывает путь в несколько метров, не задев ни одного ядра. Много? Конечно. Но не по сравнению с нейтрино. Эта пронырливая частичка летит сквозь толщу плотного вещества до первого столкновения миллиарды лет со световой скоростью.
Читать дальшеИнтервал:
Закладка: