Лоуренс Краусс - Почему мы существуем? Величайшая из когда-либо рассказанных историй
- Название:Почему мы существуем? Величайшая из когда-либо рассказанных историй
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2019
- Город:Москва
- ISBN:978-5-0013-9069-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Лоуренс Краусс - Почему мы существуем? Величайшая из когда-либо рассказанных историй краткое содержание
Почему мы существуем? Величайшая из когда-либо рассказанных историй - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Массивные частицы, передающие слабое взаимодействие, должны выглядеть для нас в точности как выглядели бы фотоны для гипотетических физиков, живущих внутри сверхпроводника. Потому и различие между электромагнетизмом и слабым взаимодействием столь же иллюзорно, как и та разница, которую физики на ледяном кристалле морозного узора на оконном стекле заметили бы между силами, действующими вдоль ребра своего кристалла и поперек него. И только простой случайностью объясняется тот факт, что одна калибровочная симметрия нарушается в мире нашего опыта, а другая – нет.
Вайнберг хотел избежать рассуждений о частицах, участвующих в сильном взаимодействии, поскольку ситуация там по-прежнему была запутанной. Поэтому он решил заняться частицами, взаимодействующими только посредством слабого или электромагнитного взаимодействия, а именно электронами и нейтрино. Поскольку слабое взаимодействие превращает электроны в нейтрино, ему нужно было придумать такой набор заряженных векторных фотоноподобных частиц, который производил бы такую трансформацию. Эти частицы не что иное, как заряженные векторные бозоны, существование которых предположил Швингер; традиционно их называют W +– и W-бозонами.
Поскольку слабое взаимодействие смешивает друг с другом только левые электроны и нейтрино, один из типов калибровочной симметрии должен обусловливать взаимодействие с W-частицами только левых частиц. Но поскольку и левые, и правые электроны взаимодействуют с фотонами, калибровочная симметрия электромагнетизма тоже должна быть включена в эту единую модель таким образом, чтобы левые электроны могли взаимодействовать и с фотонами, и с новыми заряженными W-бозонами, а правые электроны взаимодействовали бы только с фотонами, но не с W-частицами.
Математически единственным способом добиться этого – как выяснил Шелдон Глэшоу, размышляя об электрослабом объединении шестью годами ранее, – могло бы быть существование дополнительного нейтрального слабого бозона, с которым правые и левые электроны могли взаимодействовать, помимо взаимодействия с фотонами. Этот новый бозон Вайнберг назвал Z, от слова zero , нуль.
Далее, в природе должно существовать некое новое поле, которое образует конденсат в пустом пространстве, вызывающий спонтанное нарушение симметрий, управляющих слабым взаимодействием. Элементарная частица, связанная с этим полем, представляет собой массивный бозон Хиггса, тогда как остальные гипотетические бозоны Голдстоуна должны быть проглочены W- и Z-бозонами, чтобы придать им массу посредством предложенного Хиггсом механизма. При этом единственным калибровочным бозоном с нулевой массой остается фотон.
Но этого мало. В силу введенной им калибровочной симметрии новая хиггсовская частица у Вайнберга взаимодействует также с электронами, а когда образуется конденсат, появляются массы у электронов, а также W- и Z-частиц. Таким образом, эта модель не только объясняет массы калибровочных частиц, передающих слабое взаимодействие, и, следовательно, определяет силу этого взаимодействия, но вдобавок то же самое хиггсовское поле еще и придает массу электронам!
В этой модели присутствовали все ингредиенты, необходимые для объединения слабого и электромагнитного взаимодействий. Более того, если начать с калибровочной теории Янга – Миллса с безмассовыми калибровочными бозонами до нарушения симметрии, то можно было надеяться, что те же замечательные свойства калибровочных теорий, связанные с симметрией и впервые исследованные в квантовой электродинамике, позволят получить при помощи этой теории конечные разумные результаты. В то время как фундаментальная теория с массивными фотоноподобными частицами обладала явными неустранимыми недостатками, была надежда на то, что, если массы возникают только после и в результате нарушения симметрии, эти недостатки, возможно, и не проявятся. Но в то время это была всего лишь надежда.
Ясно, что в реалистичной модели хиггсовская частица должна связываться и с другими частицами, задействованными в слабом взаимодействии, а не только с электроном. При отсутствии хиггсовского конденсата все эти частицы: протоны (или те частицы, из которых они состоят), мюоны и т. д. – все они обладали бы в точности нулевой массой. Каждая деталь, отвечающая за наше существование , – мало того, за самое существование массивных частиц, из которых все мы состоим, – должна, таким образом, возникнуть в результате природной случайности – образования в нашей Вселенной особого хиггсовского конденсата. Конкретные черты, делающие наш мир тем, что он есть, – все эти галактики, звезды, планеты, люди и взаимодействия между ними – выглядели бы совершенно по-другому, если бы такой конденсат не сформировался.
Или если бы он сформировался иначе.
Точно так же как мир, который видят вокруг себя ранним зимним утром воображаемые физики на ледяном кристалле разрисованного морозом окна, был бы совершенно иным, если бы кристалл выстроился в другом направлении, так и черты нашего мира, допускающие наше существование, критически зависят от природы хиггсовского конденсата. То, что в свойствах частиц и полей, образующих наш мир, возможно, представляется нам чем-то специфическим, на деле оказывается не более особенным, спланированным или значительным, чем случайная ориентация гребня этого ледяного кристалла, хотя существам, живущим на этом кристалле, она тоже может казаться неслучайной.
И еще немного поэзии. Уникальная модель Янга – Миллса, которая привлекла Вайнберга в 1967 г. и на которую годом позже наткнулся также Абдус Салам, была той самой моделью, которую предложил шестью годами ранее его старый университетский друг Шелдон Глэшоу, откликнувшийся на призыв Швингера найти симметрию, которая помогла бы объединить слабое и электромагнитное взаимодействия. Никакой другой вариант не мог бы математически воспроизвести то, что мы сегодня наблюдаем в мире. Все это время модель Глэшоу практически игнорировалась, поскольку тогда не было известно никакого механизма, способного придать слабым бозонам массы. Но теперь такой механизм появился, и это был механизм Хиггса.
Вайнберг и Глэшоу, жизни которых не раз пересекались начиная с детского возраста, позже разделили Нобелевскую премию между собой и с Саламом за совершенно независимое открытие величайшего объединения в теории физики со времен Максвелла, объединившего электричество и магнетизм, и Эйнштейна, объединившего пространство и время.
Глава 18
Туман расходится
Нет языка, и нет наречия, где не слышался бы голос их.
Псалмы 18:4Вы, наверное, думаете, что после выхода статьи Вайнберга физики всего мира устроили праздники с фейерверками. На самом же деле за следующие три года после публикации теории Вайнберга ни один физик, включая и самого Стивена, не нашел повода сослаться на эту статью – на сегодняшний день одну из самых цитируемых работ в физике элементарных частиц. Если в исследовании природы и было сделано великое открытие, то этого никто тогда еще не заметил.
Читать дальшеИнтервал:
Закладка: