Лоуренс Краусс - Почему мы существуем? Величайшая из когда-либо рассказанных историй
- Название:Почему мы существуем? Величайшая из когда-либо рассказанных историй
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2019
- Город:Москва
- ISBN:978-5-0013-9069-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Лоуренс Краусс - Почему мы существуем? Величайшая из когда-либо рассказанных историй краткое содержание
Почему мы существуем? Величайшая из когда-либо рассказанных историй - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Для решения этой задачи экспериментаторам пришлось приложить не меньше усилий, чем ранее теоретикам для разработки самой теории. Во многих отношениях задача эта была более масштабной: на ее решение ушло более пятидесяти лет и потребовалось создание самого сложного прибора, который когда-либо пытался построить человек.
Глава 20
Побеждая вакуум
…кто ударит тебя в правую щеку твою, обрати к нему и другую…
Мф 5:39К концу 1970-х гг. теоретики оказались на коне, они ликовали и праздновали триумф. Если путь к Стандартной модели был преодолен так стремительно, то какие еще новые миры ожидают ученых? Мечты о теории всего, давно дремавшие, вновь стали просыпаться, и не только в сумеречных уголках коллективного подсознания теоретиков.
Однако калибровочные частицы W и Z по-прежнему никому не удавалось увидеть, и непосредственное их наблюдение все еще казалось устрашающе сложной задачей. Теория давала точное предсказание их масс – приблизительно в девяносто раз больше массы протона. Сложность получения этих частиц была обусловлена простым физическим обстоятельством.
Фундаментальное уравнение теории относительности Эйнштейна, E = mc 2, говорит, что можно превратить энергию в массу, разогнав частицы до энергий, многократно превышающих их массу покоя. После этого можно направить их в мишень и посмотреть, что получится.
Проблема в том, что энергия, которая доступна для порождения новых частиц при столкновениях со стационарной мишенью, соответствует так называемой энергии центра масс. Для тех, кто не испугается лишней формулы, скажу, что она равна квадратному корню из удвоенного произведения энергии ускоренной частицы и энергии частицы мишени, связанной с ее массой покоя. Представьте, что вы разогнали частицу до стократной энергии массы покоя протона, которая составляет примерно один гигаэлектронвольт (1 ГэВ). Тогда при столкновении со стационарными протонами в мишени энергия центра масс, доступная для создания новых частиц, составит лишь около 14 ГэВ. Эта величина чуть больше энергии центра масс, доступной в самом мощном ускорителе частиц в 1972 г.
Чтобы получить энергии, требуемые для образования массивных частиц, таких как W- и Z-бозоны, необходимо столкнуть два встречных пучка частиц. В этом случае полная энергия центра масс будет равняться просто удвоенной энергии каждого пучка в отдельности. Если каждый из двух сталкивающихся пучков имеет энергию, в сто раз превышающую массу покоя протона, то столкновение даст 200 ГэВ энергии, доступной для превращения в массу новых частиц.
Зачем же тогда строить ускорители со стационарными мишенями вместо коллайдеров? Ответ прост. Если я стреляю пулей в дверь амбара, то более или менее гарантированно во что-нибудь попаду. Однако если я стреляю пулей в другую пулю, летящую навстречу, то мне нужно быть намного более искусным стрелком, чем кто-либо на этом свете, и иметь лучшее ружье, чем любое из произведенных до сих пор, чтобы гарантированно в эту пулю попасть.
Именно такая задача встала перед экспериментаторами в 1976 г., когда наконец они стали воспринимать электрослабую модель достаточно серьезно, чтобы считать, что ее проверка стоит времени, усилий и денег, которые на это потребуются.
Однако никто не знал тогда, как построить установку, позволяющую получить нужную энергию. Ускорять отдельные пучки частиц или античастиц до высоких энергий тогда уже научились. К 1976 г. протоны удавалось разогнать до 500 ГэВ, а электроны – до 50 ГэВ. При более низких энергиях удавалось успешно организовать столкновения электронов и их античастиц, именно так в 1974 г. были открыты новые частицы, содержащие очарованные кварк и антикварк.
Протоны имеют большую массу и, следовательно, большую энергию покоя, поэтому их проще разогнать до высоких энергий. В 1976 г. в ЦЕРН в Женеве был запущен Протонный суперсинхротрон (SPS) – традиционный ускоритель с фиксированной мишенью, работающий с протонным пучком с энергией 400 ГэВ. Однако к моменту его пуска на другом ускорителе в лаборатории имени Ферми возле Чикаго были уже получены протонные пучки с энергией 500 ГэВ. В июне того же года физики Карло Руббиа, Питер Макинтайр и Дэвид Клайн выдвинули на конференции по нейтрино смелое предложение: превратить SPS в машину для столкновений протонов с их античастицами – антипротонами, что потенциально должно было позволить ЦЕРН получить W- и Z-частицы.
Их дерзкая идея состояла в том, чтобы использовать один и тот же кольцевой туннель для ускорения протонов в одном направлении и антипротонов – в другом. Поскольку эти две частицы имеют противоположные электрические заряды, один и тот же ускоряющий механизм будет оказывать на них противоположное действие. Таким образом, на одном ускорителе принципиально возможно получить два высокоэнергетических пучка, циркулирующих по кольцу в противоположных направлениях.
Логика такого предложения была достаточно прозрачна, но с ее воплощением дело обстояло намного хуже. Прежде всего, учитывая силу слабого взаимодействия, для получения даже нескольких W- и Z-частиц потребовалось бы столкновение сотен миллиардов пар протонов и антипротонов. Но никому еще не удавалось получить и собрать достаточно антипротонов, чтобы сформировать из них пучок в ускорителе.
Далее, вам, наверное, представляется, что если два пучка движутся по одному и тому же туннелю в противоположных направлениях, то частицы в них будут сталкиваться друг с другом на всем протяжении туннеля, а не в детекторах, специально разработанных для регистрации и измерения характеристик продуктов столкновений. Однако на самом деле все обстояло совершенно не так. Сечение даже небольшого туннеля в сравнении с размером области, в которой протон и антипротон могут столкнуться, выглядит настолько огромным, что возникла обратная проблема. Казалось невозможным получить достаточно антипротонов и обеспечить, чтобы они и протоны во встречном пучке были достаточно сжаты, чтобы при сведении обоих пучков, направляемых мощными магнитами, наблюдались бы хоть какие-то столкновения.
Убедить директорат ЦЕРН переделать один из самых мощных в мире ускорителей, построенный в кольцевом туннеле длиной почти восемь километров на французско-швейцарской границе, в коллайдер нового типа было бы трудной задачей для большинства людей, но Карло Руббиа – воплощение харизматичной стихии – был на это вполне способен. Мало кто из тех, кто умудрился встать на пути Руббиа, не пожалел об этом впоследствии. На протяжении восемнадцати лет он еженедельно летал между ЦЕРН и Гарвардом, где был профессором. Его кабинет располагался двумя этажами ниже моего, но я всегда знал, когда он находился в городе, потому что мне его было слышно. Помимо того, что идея Руббиа была хороша, пробивая ее, он, по существу, предлагал ЦЕРН превратить SPS из отстающей машины в самый впечатляющий ускоритель мира. Шелдон Глэшоу сказал директорату Центра, побуждая их двигаться вперед: «Вы хотите ходить не спеша – или вы хотите летать?»
Читать дальшеИнтервал:
Закладка: