Стивен Хокинг - Вселенная Стивена Хокинга
- Название:Вселенная Стивена Хокинга
- Автор:
- Жанр:
- Издательство:Литагент АСТ
- Год:2018
- Город:Москва
- ISBN:978-5-17-102285-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Хокинг - Вселенная Стивена Хокинга краткое содержание
Вселенная Стивена Хокинга - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Примерно через 100 секунд после Большого взрыва температура Вселенной упала до миллиарда градусов, что примерно соответствует температуре в недрах самых горячих звезд. При такой температуре энергии протонов и нейтронов уже недостаточно, чтобы сопротивляться сильному ядерному взаимодействию, и они начинают объединяться в ядра атомов дейтерия (тяжелого водорода), состоящие из одного протона и одного нейтрона. Затем ядра дейтерия соединяются с другими протонами и нейтронами, образуя ядра гелия, которые включают два протона и два нейтрона, а также небольшое количество ядер более тяжелых элементов – лития и бериллия. Согласно расчетам в модели горячего Большого взрыва, примерно четверть протонов и нейтронов должны были превратиться в ядра гелия, а также в небольшое количество ядер тяжелого водорода и других элементов. Оставшиеся нейтроны распадаются, превращаясь в протоны – ядра обычных атомов водорода.
Эту модель горячей ранней стадии Вселенной предложил Георгий Гамов в своей знаменитой статье, написанной в 1948 году совместно с его аспирантом Ральфом Альфером. У Гамова было своеобразное чувство юмора – он уговорил физика-ядерщика Ханса Бете прибавить свое имя к списку авторов, чтобы получилось «Альфер, Бете, Гамов» – совсем как три первые буквы греческого алфавита – альфа, бета, гамма. И это так подходило для статьи о возникновении Вселенной! Авторы той статьи сделали замечательное предсказание, согласно которому излучение (фотоны) от самых ранних стадий Вселенной должно присутствовать вокруг нас и сегодня, но его температура должна быть лишь на несколько градусов выше абсолютного нуля (–273° С). Как раз это микроволновое излучение Пензиас и Уилсон обнаружили в 1965 году. Когда Альфер, Бете и Гамов опубликовали свою статью, о ядерных реакциях протонов и нейтронов мало что было известно. Поэтому предсказанные ими соотношения различных элементов в ранней Вселенной весьма неточны. Но впоследствии эти расчеты выполнили вновь с учетом новых данных, и теперь они великолепно согласуются с результатами наблюдений. К тому же трудно придумать другое объяснение тому, почему во Вселенной так много гелия. А потому мы вполне уверены, что сумели создать верную картину, во всяком случае, тех событий, которые разворачивались спустя секунду после Большого взрыва и позднее.
Всего через несколько часов после Большого взрыва синтез гелия и других элементов прекращается. На протяжении следующего миллиона лет Вселенная расширяется, и ничего особенного не происходит. Когда наконец температура падает до нескольких тысяч градусов, энергии электронов и атомных ядер оказывается уже недостаточно для преодоления взаимного электромагнитного притяжения, и они начинают объединяться в атомы. Вселенная как целое продолжает расширяться и остывать, тогда как в областях повышенной плотности расширение замедляется из-за дополнительного гравитационного притяжения. Под действием этой силы расширение местами полностью прекращается и сменяется сжатием. По мере сжатия плотные области могут начать закручиваться под действием тяготения вещества, расположенного за их пределами. Размер коллапсирующей области уменьшается и попутно ускоряется ее вращение – совсем как у фигуристов на льду, когда они прижимают руки к груди. Наконец, когда сжимающаяся область обретает достаточно малый объем, скорость вращения возрастает настолько, что уравновешивает силу притяжения, – именно так возникли дискообразные вращающиеся галактики. Другие области, которые не успели достаточно быстро закрутиться, превратились в овальные объекты, называемые эллиптическими галактиками. Их сжатие останавливается, поскольку отдельные части галактики начинают обращаться вокруг центра по [случайно ориентированным] устойчивым орбитам, притом что галактика в целом не вращается [30].
В дальнейшем газовая водородно-гелиевая среда в галактиках начинает постепенно распадаться на менее крупные облака, которые коллапсируют под действием собственного тяготения. По мере их сжатия и столкновений атомов, из которых они состоят, температура газа начинает расти, пока наконец не достигнет величины, достаточной для начала реакций термоядерного синтеза. В результате этих реакций часть водорода превращается в гелий, а выделяемое при этом тепло приводит к повышению давления до уровня, достаточного, чтобы остановить дальнейшее сжатие облака. Облако остается в устойчивом состоянии в течение долгого времени, пока в недрах звезд, схожих с нашим Солнцем, продолжаются термоядерные реакции, сопровождающиеся превращением водорода в гелий и излучением выделяющейся при этом энергии в виде света и тепла. Чтобы уравновесить более сильное гравитационное притяжение массивных звезд, температура в их недрах должна быть выше, из-за чего ядерные реакции протекают быстрее и запасы водорода оказываются исчерпанными за какую-то сотню миллионов лет. После этого звезда слегка сжимается, нагревается еще сильнее и начинает перерабатывать гелий в более тяжелые элементы вроде углерода и кислорода. Правда, при этом вырабатывается не так много энергии, и оттого наступает кризис, описанный в главе про черные дыры. Мы еще не до конца понимаем дальнейший ход событий, но, по-видимому, центральные области звезды коллапсируют до очень плотного состояния, превращаясь в нейтронную звезду или черную дыру. Иногда звезда при этом отбрасывает внешние слои в результате чудовищного взрыва – так называемой вспышки сверхновой: тогда светимость звезды в разы превышает светимость прочих звезд галактики. Некоторые из тяжелых элементов, синтезированных в конце жизни звезды, выбрасываются вовне, перемешиваясь с газом в галактике, – это сырье пойдет на производство следующего поколения звезд. В Солнце содержится примерно 2 % таких тяжелых элементов, потому что это звезда второго или третьего поколения, родившаяся около 5 миллиардов лет назад из вращающегося газового облака, хранящего остатки вещества ранее вспыхнувших сверхновых. Большая часть газа этого облака пошла на образование Солнца или была выдута наружу, но небольшое количество относительно тяжелых элементов сконцентрировалось в сгустки, из которых сформировались тела, сейчас обращающиеся вокруг Солнца, – планеты.
Первоначально Земля была очень горячей и не имела атмосферы. Со временем наша планета остыла, и в результате выхода на поверхность газов из горных пород оформилась ее газообразная оболочка. Мы бы не выжили в первичной атмосфере Земли. В ней не было кислорода и при этом было много других, ядовитых газов, таких как сероводород (именно им пахнут протухшие яйца). Правда, некоторые примитивные формы могут припеваючи жить при таких условиях. Считается, что они зародились и развились в океане – возможно, в результате случайных комбинаций атомов, объединявшихся в большие структуры – так называемые макромолекулы, способные обеспечить дальнейшую сборку других атомов в океане в подобные структуры. Они стали воспроизводить себя и множиться. В некоторых случаях воспроизведение было сопряжено с ошибками. Чаще всего из-за них макромолекула теряла способность к самовоспроизведению и со временем разрушалась, но вследствие некоторых ошибок синтезировались новые макромолекулы, которые воспроизводили себя более эффективно. Это дало им определенные преимущества, и со временем они вытеснили исходные макромолекулы. Таким образом начался процесс эволюции: на Земле возникали все более сложные самовоспроизводящиеся организмы. Первые примитивные формы жизни питались разнообразными веществами, включая сероводород, и выделяли кислород. В результате состав атмосферы постепенно менялся, приближаясь к современному, сделавшему возможным появление и развитие более высокоорганизованных форм жизни – рыб, пресмыкающихся, млекопитающих и, в конце концов, человека.
Читать дальшеИнтервал:
Закладка: