Даниил Данин - Неизбежность странного мира
- Название:Неизбежность странного мира
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1962
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Даниил Данин - Неизбежность странного мира краткое содержание
Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом.
Содержит иллюстрации.
Неизбежность странного мира - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Атомы разных химических элементов прежде всего тем и отличаются друг от друга, что в их ядрах заключены разные количества протонов. Есть три водорода: обыкновенный — протий, тяжелый — дейтерий, сверхтяжелый — тритий. Но все это — разновидности (изотопы) одного и того же химического элемента, потому что их ядра, содержащие только по одному протону, все имеют один и тот же заряд: + 1.
Изменить число протонов в ядре — это все равно, что превратить один элемент в другой!
А ионизация — процесс гораздо более скромный и гораздо более легкий: ионизированный водород остается водородом со всеми своими основными свойствами, гелий — гелием, а уран — ураном. Но если с атомными ядрами при ионизации не происходит решительно ничего, то, значит, что-то происходит с наружными электронами атомов?
Так остаются только два последних способа сделать атом заряженным: либо отодрать от его внешней оболочки один или несколько электронов, либо, напротив, присоединить еще новые. Другими словами: или хотя бы немного рассеять электронное облако, или сгустить.
Заметьте, какие глаголы приходится употреблять в разговоре об ионизации: «отодрать», «удалить», «присоединить», «сгустить»… Это все активные действия. При их совершении «происходит либо затрата энергии, либо ее выделение.
Если бы ионизация давалась даром, это было бы также безрадостно, как если бы она была невозможна.
В самом деле, это ведь означало бы, что все связи атомных электронов с ядрами ничего не стоят, что они попросту не существуют. Тогда мир предстал бы перед нами как скопление голых ядер или, напротив, ядер, окруженных густыми тучами электронов. Все зависело бы от чистого случая — от капризов механических столкновений частиц. Нечаянно возникали бы нелепейшие соединения элементов — возникали и тут же распадались бы. В конце концов мир превратился бы в однообразную мешанину ядер и электронов — в бесформенный электронно-ядерный газ. Тоскливое зрелище мира, в котором некому было бы тосковать…
А невозможность ионизации означала бы, что связи электронов с ядрами раз и навсегда нерушимы. Такая перспектива нисколько не отрадней. Атомы и вправду были бы тогда навечно запечатанными, крепко-накрепко засургученными, неизменяемыми. Они стали бы, наконец, оправдывать свое первородное прозвище — «неделимые». Но природе нечего было бы с ними делать. Мир превратился бы в почтовый ящик, набитый письмами, которые нельзя открыть и прочитать. Нелепый, недоступный даже воображению, гадательный мир…
Энергия ионизации не может быть нулевой — связи не существуют. И не может быть бесконечной — связи нерасторжимы. Все процессы в жизни природы конечны, кроме процесса самой этой жизни, не имеющей во времени и пространстве ни начала, ни конца.
Неизбежность затраты энергии на ионизацию атомов (кто, где и как расходует ее или получает, нам сейчас совершенно неважно) делает это событие в одних случаях возможным, а в других — нет. И так как всякий раз баланс энергии вполне определенен, ибо всякий раз вполне определенны связи, которые разрываются или воссоздаются, то в руках ученых оказывается надежный способ вести одну из бухгалтерских книг природы. Они записывают в ней, как сводятся концы с концами во множестве явлений микромира.
Так невидимые и неслышные события, к которым, казалось бы, и не подступиться с точными измерениями, вдруг становятся предметом строгого учета. А тогда неудивительно, что появляется возможность их «увидеть и услышать».
Здесь лежит исток нескончаемой серии открытий в мире элементарных частиц. Здесь исток и открытия настоящего природного заповедника этих частиц — космических лучей.
Листочки электроскопа сами опадали со временем. Кто-то стягивал с них заряды, или, как говорят ученые, нейтрализовал их. Это могли быть только заряженные ионы.
Значит, кто-то, пренебрегая непроницаемостью герметического сосуда, все-таки в него проникал и превращал нейтральные атомы газа в странников Фарадея.
Пронизывать стенки камеры с электроскопом способны были рентгеновские лучи и лучи радиоактивных элементов. Их энергии хватило бы и на проникновение внутрь камеры и на ионизацию газа.
Так, может быть, подумали физики, вблизи камеры действительно всякий раз ютятся какие-то неведомые источники этих лучей? Вместо того чтобы искать и устранять их, проще было окружить камеру толстыми свинцовыми экранами — достаточно толстыми, чтобы такие лучи поглотить.
Вообразите себе бегуна, пересекающего пустую площадь: его бегу никто не мешает. Так движутся лучи в вакууме: на их пути могут попасться лишь редкие прохожие — единичные частицы вещества. Но если площадь заполнена народом, бегун вынужден продираться сквозь толпу, расталкивая встречных и теряя на это силы. В конце концов он выдохнется и застрянет в толпе. Это случится тем раньше, чем гуще толпа. Так движутся лучи через вещество. Да при этом они бегуны с завязанными глазами: выбирать направление им не дано. Чем плотнее вещество, тем короче путь, на котором они успевают растратить всю свою энергию. Но этот путь все-таки тем длиннее, чем их первоначальная энергия больше.
Толща свинца поглощала рентгеновские и радиоактивные лучи. А электроскоп разряжался! Было над чем задуматься.
Сначала физики махнули рукой — «ошибки опыта». Но эти мнимые ошибки повторялись с такой регулярностью и однообразием, что досада физиков на несовершенство приборов вскоре сменилась острейшим любопытством. Возникла самая естественная для той поры мысль: существуют еще какие-то сверхпроникающие, сверхэнергичные лучи, для которых и толща свинца не преграда.
Что же они такое, эти дьявольские лучи? Как велика их чудовищная энергия? Откуда они приходят? Простые вопросы сменились сложными.
Поначалу новые предполагаемые лучи вовсе не считали космическими. Им приписывалось земное — почвенное — происхождение. Но отсюда немедленно следовал простой и легко проверяемый вывод: рождаясь в земной коре и пробиваясь сквозь толщу атмосферы снизу, они должны были терять энергию с высотой и все слабее ионизировать газ в замкнутой камере электроскопа. «Дух приключений» погнал ученых в горы — пешком, на лошадях, на машинах. И за облака — в зыбких гондолах воздушных шаров.
И вот тут-то оказалось, что все происходит так, словно небо и земля поменялись местами: с высотой электроскоп разряжался все быстрее, как если бы он не удалялся от источника лучей, а приближался к нему! В 1910 году австрийский физик Гесс, побывав на пятикилометровой высоте, впервые обоснованно высказал мысль, что это вовсе не земные, а «высотные лучи». Потом, уже после вынужденного бесплодья тяжелых лет первой мировой войны, когда большинству физиков пришлось заниматься не своим делом, немец Кольхерстер поднялся на аэростате до высоты в двенадцать километров и установил, что там, за облаками, ионизация в 30 раз сильнее, чем на уровне моря!
Читать дальшеИнтервал:
Закладка: