Джон Уиллис - Все эти миры — ваши. Научные поиски внеземной жизни
- Название:Все эти миры — ваши. Научные поиски внеземной жизни
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5184-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джон Уиллис - Все эти миры — ваши. Научные поиски внеземной жизни краткое содержание
Все эти миры — ваши. Научные поиски внеземной жизни - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В отличие от планет земной группы, внешние планеты обладают множеством спутников: у Юпитера в данный момент известно 67, а у Сатурна больше 150. Самые большие из этих спутников превосходят по размеру Меркурий и нашу Луну. Это целые миры, заслуживающие внимательного изучения. Диспропорция в количестве спутников между газовыми гигантами и планетами земной группы объясняется разницей в массе. Во вращающемся диске из газа и пыли, который представляла собой зарождающаяся Солнечная система, газовые гиганты становились все больше и массивней. Со временем они обзаводились собственными миниатюрными дисками из газов и камней, из которых впоследствии сформировалась их многочисленная свита из спутников.
Когда мы удалимся за орбиту Нептуна, яркость Солнца будет в 1000 раз меньше, чем на Земле. Мы вступаем в темное царство Плутона — планеты, впервые обнаруженной Клайдом Томбо в 1930 г. В конце 1990-х — начале 2000-х гг. с помощью больших современных телескопов нового поколения удалось обнаружить еще несколько похожих на Плутон каменистых небесных тел: одни побольше, другие поменьше, но все вместе они составляли рассеянный диск, состоящий из материала, оставшегося после формирования Солнечной системы, и получивший название пояса Койпера. Плутон оказался одним из множества таких же, как он, небесных тел, и тогда встал вопрос: либо все эти объекты следовало признать планетами, либо не признавать ни один из них. В 2006 г. Международный астрономический союз пришел к заключению, что Плутон нельзя считать обычной планетой, и причислил его наряду с еще несколькими крупными астероидами к новой категории карликовых планет. Там они и останутся, если, конечно, наши взгляды на Солнечную систему не изменятся.
Легче всего представить масштабы Солнечной системы, если посмотреть, какое время требуется фотону света, чтобы добраться от поверхности Солнца до каждой из планет. Фотон преодолевает расстояние до Земли за 8 минут. Солнце, которое вы видите в настоящий момент, — то, каким оно было 8 минут назад. Настоящее Солнце скрыто от нас завесой времени, через которую фотон, обладающий конечной скоростью, проникнуть не может. Чтобы продолжить путь от Земли до Марса, фотону потребуется еще 4 минуты. Если задуматься, то радиосвязь — всего лишь поток фотонов низкой энергии, поэтому радиосообщение или телевизионный сигнал смогут преодолеть расстояние от Земли до Марса и обратно за 8 минут. Этим объясняется, почему марсоходы управляются при помощи коротких последовательностей простых команд, а не при помощи джойстика. Из-за восьмиминутной задержки ваш аппарат застрянет или разобьется раньше, чем вы узнаете о том, что ему грозит опасность. Путешествие от Солнца до Юпитера займет у фотона 42 минуты, а до Нептуна, последнего из газовых гигантов, — больше 4 часов. Если мы будем считать орбиту Плутона границей Солнечной системы, фотону потребуется 5 часов 20 минут, чтобы оставить позади пояс Койпера и устремиться к темным глубинам Вселенной.
Теперь вы лучше понимаете свое место в Солнечной системе и ее масштабы. Остается только просмотреть заставку фильма «Контакт» и отметить допущенные неточности.
Длинные руки Солнца
Мы уже знаем, что Солнце — это энергостанция всей Солнечной системы. От него зависит вся жизнь на Земле. Но как далеко простираются возможности Солнца? Когда его влияние ослабнет настолько, что не сможет поддерживать существование жизни?
На верхний слой земной атмосферы приходится примерно 1370 Вт/м 2солнечной энергии ‹‹3››. Сумма этой энергии, получаемой изо дня в день, обеспечивает существование всей жизни на Земле и полностью управляет погодой. Количество солнечного света, получаемое каждой планетой и спутником в Солнечной системе, можно рассматривать как базовые средства для жизни — по крайней мере для низших ее форм, таких как фотосинтезирующие бактерии, преобразующие солнечную энергию в питательные вещества.
Так сколько солнечного света получают планеты? Орбита Меркурия расположена ближе к Солнцу, и он получает в шесть раз больше солнечной энергии, чем Земля. Марс находится дальше от Солнца, и ему достается всего 40 % энергии, получаемой Землей. По мере продвижения во внешнюю область Солнечной системы влияние Солнца резко снижается: Юпитер получает лишь 3 % от земной дозы солнечного света. На холодной орбите Плутона солнечного света еще меньше: всего 1 %.
Думаю, нам было бы интересно узнать, сколько света нужно для существования жизни. И снова земной опыт говорит нам, что жизнь обладает удивительной стойкостью. Фотосинтезирующие бактерии были обнаружены на глубине 100 м в Черном море. Однако их метаболизм основан на аноксигенном (бескислородном) фотосинтезе, в результате которого вырабатываются соединения серы, а не молекулярный кислород. Такие бактерии — живые реликты древних фотосинтезирующих организмов. На такие глубины с поверхности проникает только 0,05 % света, т. е. уровень освещенности там почти такой же, как на поверхности Плутона. Но даже на таком низком уровне свет остается биологически продуктивным, поскольку каждая бактерия раз в несколько часов аккуратно ловит фотон и использует его энергию для поддержания метаболизма.
Поэтому, если взглянуть на Солнечную систему, то в ней нет границы, за которой мы могли бы с уверенностью сказать, что света Солнца недостаточно для поддержания фотосинтеза. Свет, пусть даже значительно ослабленный, достигает самых дальних уголков Солнечной системы и вполне может служить источником энергии для жизни, если таковая там найдется.
Живительная влага
Получается, что в Солнечной системе нет недостатка в свете и, как мы уже выяснили, простые органические соединения также имеются в избытке. А как насчет воды или — если смотреть шире — жидкости? В этой главе мы намерены сосредоточить свое внимание — и ограниченные ресурсы — на самых многообещающих местах обитания жизни в Солнечной системе. Пора решаться на дерзкий шаг!
Меркурий — атмосферы нет, нечему прикрыть вас от губительного солнечного ветра, дневная температура на поверхности достигает 427 °C — исключается. Венера — плотная атмосфера меня не пугает, но температура на поверхности еще выше, чем на Меркурии (464 °C). Хотя жизнь может существовать в формах, отличных от земных, белки, которые лежат в основе нашей биохимии, разрушаются при температуре 126 °C. Вы находитесь в сухой, раскаленной духовке. Спутников нет, жидкой воды тоже нет. Неплохо бы заглянуть на несколько дней, но мы направляемся в другое место. Планеты, подобные Юпитеру? Их не зря называют газовыми гигантами. В 1995 г. космический аппарат «Галилео» сбросил в атмосферу Юпитера спускаемый зонд, которому удалось проникнуть на 156 км вглубь атмосферы прежде, чем растущая температура вывела его системы из строя. Атмосфера Юпитера и других внешних газовых гигантов допускает существование необычных жидких слоев. Не имея данных, трудно рассуждать о том, какая на них может быть жизнь, а добраться туда очень тяжело (запущенный с «Галилео» зонд сгорел гораздо выше этого места). Как насчет Плутона и пояса Койпера? Далековато, и к тому же, когда мы туда доберемся, у нас не будет ни малейшего шанса найти там какую-нибудь жидкость.
Читать дальшеИнтервал:
Закладка: