Джон Уиллис - Все эти миры — ваши. Научные поиски внеземной жизни
- Название:Все эти миры — ваши. Научные поиски внеземной жизни
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5184-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джон Уиллис - Все эти миры — ваши. Научные поиски внеземной жизни краткое содержание
Все эти миры — ваши. Научные поиски внеземной жизни - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Ловкость рук
Возможно, вы обратили внимание на то, что я лишь бегло коснулся вопроса о загадочных наблюдениях. Почему поверхность Европы такая гладкая? Даже сегодня Солнечная система завалена крохотными обломками, которые мы называем кометами и астероидами — остатками тех давно минувших дней, когда зарождались планеты. Обломки эти постоянно падают на поверхность лишенных атмосферы миров, и с течением времени на каждой планете появляется все больше и больше кратеров в местах падений. Единственный способ стереть эти кратеры — создать новую поверхность (в случае Ио — путем активного вулканизма и распространения лавовых полей). Но почему в таком случае Европа обладает молодой, не испещренной кратерами поверхностью, возраст которой составляет каких-то 50 млн лет — просто мгновение для большинства обитателей Солнечной системы? Даже на снимках, сделанных во время непродолжительного пролета «Пионера» и «Вояджера», астрономы и планетологи могли видеть, что, хотя на поверхности нет заметных кратеров, она покрыта трещинами и неровностями, вызванными, по всей видимости, воздействием геологических сил.
Но слово «геология» не совсем подходит для данных условий. Для описания ледяного аналога Земли, где вода играет такую же геологическую роль, как и горные породы, правильнее бы было применять термин «криогеология». При таком подходе Европа представляется криогеологическим миром, где водяной лед заменяет твердые горные породы, образующие поверхность планеты, а подо льдом находится «магма», состоящая либо из более теплого льда, либо из жидкой воды. Поверхность планеты преобразуется в результате действия тектонических сил и подъема воды по трещинам. Это была удивительная гипотеза, и в конечном итоге она оказалась правильной. Предположение о существовании на Европе воды в жидкой форме, нашедшее подтверждение в ходе последующих экспедиций к Галилеевым спутникам, сразу ставит вопрос о предпосылках возникновения жизни.
Новый Галилей
В 1989 г. был дан старт дерзкой экспедиции во внешнюю Солнечную систему. «Галилео» стал первым автоматическим зондом, вышедшим на орбиту Юпитера. Этому предшествовал долгий и извилистый путь через внутреннюю Солнечную систему, длившийся шесть лет. Накопив гравитационную энергию, зонд миновал пояс астероидов и устремился к своей цели. Траектория «Галилео» получила название VEEGA [12]. Как и в случае с траекториями «Вояджеров», каждое сближение с планетами увеличивало скорость космического аппарата за счет бесконечно малого количества орбитальной энергии каждой планеты.
Космическому аппарату «Галилео» выпал, вероятно, самый интересный в научном плане начальный этап миссии за всю нашу короткую историю исследования планет Солнечной системы. По завету Карла Сагана, «Галилео» включил находящиеся у него на борту приборы во время гравитационного маневра рядом с Землей в 1990 г. и выполнил ряд наблюдений, которые можно назвать первым астробиологическим обследованием Земли с целью обнаружения жизни (мы еще вернемся к этой идее в главе 8).
Далее путь экспедиции «Галилео» проходил через пояс астероидов, где космический зонд обнаружил астероид, обладающий собственным спутником, — было замечено, что крошечный каменный астероид Дактиль обращался вокруг другого каменного астероида, Иды, немного превосходящего его размерами. Это открытие, а также полученные аппаратом снимки общего плана столкновения кометы Шумейкера — Леви с Юпитером, сделанные в 1994 г., позволяют говорить, что миссия «Галилео» стала успешной еще до того, как аппарат прибыл к Юпитеру в декабре 1995 г.
Ближе, ближе, ближе к делу
«Галилео» нес на борту спускаемый зонд, который должен был отделиться от основного аппарата и совершить ультразвуковой прыжок в неизвестные глубины юпитерианской атмосферы. Зонд отделился от «Галилео» в июле 1995 г., а 7 декабря началась стадия снижения. Вход в атмосферу происходил на сумасшедшей скорости — 47 км/с (приблизительно 170 000 км/ч). Однако за первые две минуты вхождения аппарата в атмосферу планеты сопротивление ее верхних слоев уменьшило его скорость до нескольких сотен метров в секунду. При этом спускаемый аппарат испытывал почти запредельные, достигавшие 230 g перегрузки ‹‹2››, а примерно половина теплозащитного экрана, весившего 150 кг, полностью сгорела и испарилась.
На этом этапе миссия едва не закончилось катастрофой. Предполагалось, что спускаемый аппарат выпустит парашют, который должен был затормозить зонд до скорости 160 км/ч, что позволило бы приступить к измерениям параметров атмосферы. Но парашют раскрылся на минуту позже, чем планировалось, заставив ученых изрядно понервничать. Вообще-то парашют мог и вовсе не сработать, поскольку акселерометр, который должен был активировать открытие парашюта, был установлен задом наперед, и что именно заставило парашют в конечном итоге открыться, остается загадкой. После открытия парашюта зонд спустился еще на 156 км в атмосферу Юпитера. В течение часа он передавал на Землю данные телеметрии, которые дают нам картину химически разнообразного, неспокойного, пребывающего в постоянном движении мира.
В конце концов зонд погрузился во внутренние области атмосферы и разрушился под воздействием высокой температуры и давления: сначала расплавился парашют, затем началось свободное падение в глубины планеты. Поскольку у Юпитера нет твердой поверхности, части аппарата одна за другой постепенно плавились и испарялись, пока наконец его отдельные атомы не смешались со слоем жидкого металлического водорода в ядре Юпитера.
Юпитер по курсу!
«Галилео» вышел на орбиту Юпитера 8 декабря, на следующий день после героического самопожертвования спускаемого аппарата. Хотя «Галилео» находился на орбите Юпитера, близость к Ио, Европе, Ганимеду и Каллисто позволила ему несколько раз проходить на рекордно малом расстоянии от спутников. За восемь лет «Галилео» 35 раз облетел вокруг Юпитера и 11 раз сближался с Европой (и это еще очень немного, если учесть, сколько всего нового мы узнали). Вероятно, самым важным инструментом из всех, имевшихся на борту «Галилео», был магнитометр — два набора детекторов, расположенных на 11-метровой выносной ферме, чтобы изолировать их от магнитного поля самого аппарата ‹‹3››. Этот прибор был создан для исследования обширного магнитного поля Юпитера — второго по величине после солнечного, — которое генерируется циркуляцией металлического водорода в его внешнем ядре.
Однако никто не ожидал, что магнитное поле Юпитера будет в свою очередь создавать (правильнее было бы говорить «индуцировать») магнитное поле внутри самих Галилеевых спутников. Больше всех удивила Европа. Хотя она относительно велика для спутника (чуть меньше Луны), ее недра должны были давно застыть, превратившись в камень. Открытие «Галилео» было в равной степени неожиданно и эффектно: Европа обладает слабым магнитным полем. Если сопоставить следующие три факта — магнитное поле Европы меняет свое направление каждые 11 часов; Юпитер совершает оборот вокруг оси за 11 часов; и сама Европа совершает оборот вокруг своей оси за 3,55 земных суток, — то можно прийти к однозначному выводу, что магнитное поле не присуще самой Европе, а индуцировано Юпитером. Это означает, что на Европе есть слой с хорошей электропроводностью. В случае планет таким электропроводным слоем может быть жидкое металлическое ядро. Но что может служить проводником на Европе, на что оказывает воздействие магнитное поле Юпитера? Оказалось, что там есть жидкая вода.
Читать дальшеИнтервал:
Закладка: