Джон Уиллис - Все эти миры — ваши. Научные поиски внеземной жизни
- Название:Все эти миры — ваши. Научные поиски внеземной жизни
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2018
- Город:Москва
- ISBN:978-5-9614-5184-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джон Уиллис - Все эти миры — ваши. Научные поиски внеземной жизни краткое содержание
Все эти миры — ваши. Научные поиски внеземной жизни - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Если мы откажемся от землецентрической точки зрения, что температура от 0 до 100 °C «лучше всего» подходит для жизни, то обнаружим, что при более низких температурах жизнь обладает определенными преимуществами. Например, органическая химия Титана может использовать водородные связи (которые слабее ковалентных) для образования более широкого диапазона стабильных химических соединений, чем это возможно при более высоких температурах. Низкотемпературная титанианская жизнь марширует под более медленный ритм, чем теплолюбивая земная, однако, поскольку условия на Титане стабильны, это не помешает ей преодолеть как добиологическую часть пути, так и собственно возникновение жизни.
Неудобная правда
Самое трудное в обнаружении жизни на Титане — это придумать способ ее распознать. Даже на Земле ученые, представляющие различные дисциплины, не могут выработать единого определения жизни.
Вместо того чтобы рассматривать различные определения, применяемые зоологами, ботаниками, химиками, молекулярными биологами и прочими, давайте сосредоточимся на астробиологах. Давайте вспомним, какие методы применяли астробиологи ранее, когда пытались обнаружить признаки жизни, как, например, в случае экспедиции «Викинга» или изучения ALH84001. Каждая группа ученых использовала какое-то конкретное определение жизни, и при планировании экспериментов или проведении анализов они стремились проверить соответствие образцов именно этим гипотезам.
Начнем с «Викинга». В экспериментах, осуществленных в рамках биологической программы экспедиции «Викинга», питательные вещества добавлялись к образцам марсианского грунта при различных условиях. Во время планирования миссии ученые решили, что, если в ходе эксперимента будет зафиксировано выделение газов, это можно будет считать надежным показателем метаболической активности марсианских микробов. В данном случае определение жизни было: «Во мне идут процессы обмена веществ — значит, я существую». А как же тогда ALH84001? Ученые искали микроскопические — точнее, наноскопические — физические структуры, в которых можно было бы распознать окаменевшие клетки. В этом случае определением жизни было: «Я организуюсь — значит, я существую».
Итак, если мы полетим на Титан — давайте предположим, что это будет автоматическая миссия, — каким должно быть наше рабочее определение жизни? Мы пришли к заключению, что нам больше всего подходит определение жизни как самоподдерживающейся химической системы, подверженной дарвиновскому отбору. С учетом этого определения что мы будем искать и какие опыты будем проделывать?
Один из главных сторонников этого эволюционно ориентированного поиска жизни — Стивен Беннер из Фонда прикладной молекулярной эволюции. Он полагает, что три самые важные молекулы, которые использует земная жизнь, — ДНК (хранилище генетической информации), РНК (осуществляющая транспортную и строительную функцию) и белки (отвечающие за работу всей системы). Более того, он утверждает, что атомные структуры трех этих земных биомолекул соответствуют неким простым принципам, которые могут быть универсальными для любой жизни. Если мы научимся распознавать внеземные молекулы, соответствующие этим принципам, это позволит нам обнаружить инопланетную жизнь.
Один из самых простых принципов, которые нам предстоит усвоить, — полиэлектролитная теория гена. Суть ее заключается в том, что главное свойство, которое делает молекулу ДНК таким хорошим средством кодирования информации, — это повторение отрицательного заряда, присутствующего у фосфатных групп, составляющих остов всех молекул ДНК. Поскольку одноименные заряды отталкиваются, это заставляет молекулы ДНК вытягиваться в длинные нити, что значительно облегчает ее дальнейшее считывание молекулой РНК. Кроме того, повторяющийся на всем протяжении электрический заряд определяет общие химические свойства молекулы ДНК, как, например, то, что она растворяется в воде. Тот факт, что изменение последовательности азотистых оснований C, A, G и T, из которых складывается здание нашей жизни, не меняет химических свойств молекулы, является исключительно важным условием для сохранения возможности генетических изменений (хотя некоторые ученые с этим не согласны).
Так что наша задача — придумать эксперименты по образцу тех, что проводились молекулярными биологами, которые были бы достаточно простыми и надежными, чтобы их можно было осуществить на Титане и попробовать отыскать эти характерные молекулы на месте. Это очень многообещающее новое направление — определение жизни на языке молекулярной биологии. Те из вас, кто подходит к астробиологии с практической точки зрения, вероятно, согласятся, что некое сочетание из трех изложенных выше подходов — метаболизма, клеточной структуры и молекулярной структуры — позволит нам создать исчерпывающую программу биологических исследований для Титана.
Кто съел весь ацетилен?
Титан постоянно подвергает сомнению наши представления о химическом составе его поверхности и атмосферы. Некоторые из этих представлений вполне убедительны: метан, присутствующий в атмосфере в больших количествах, преобразуется в более сложные органические соединения в результате воздействия солнечного излучения. Другие черты титанианской атмосферы нам по-прежнему непонятны: если метан превращается в более сложные химические вещества, то почему он со временем не иссякает?
При современной скорости фотохимических реакций метан, в настоящее время присутствующий в атмосфере, будет весь израсходован примерно за 50 млн лет. В масштабах времени существования Солнечной системы — это одно мгновение. Так как же восполняются запасы метана? Довольно убедительным объяснением этого явления может служить криовулканизм, когда струи газа изливаются на поверхность спутника из подземных резервуаров. Однако до сих пор никаких примеров отчетливых вулканоподобных образований на поверхности Титана обнаружено не было. Другим объяснением может быть биологическое происхождение метана, и этот вариант вполне заслуживает рассмотрения.
В 2005 г. тот же самый Крис Маккей, который выдвинул шуточную гипотезу уникального Титана, опубликовал небольшую статью, посвященную наличию в атмосфере Титана значительного количества потенциального метаболического топлива. Одним из самых простых (и самых высокоэнергетических) способов поддержания жизнедеятельности для жителей Титана могла бы быть реакция ацетилена с водородом, при которой выделяются две молекулы метана: C 2H 2+ 3H 2= энергия + 2CH 2. Что нужно отметить в этой реакции? Ацетилен и водород потребляются обитающими на поверхности Титана живыми организмами, и в результате выделяется метан. Хорошо, а как это согласуется с нашими измерениями количества метана в атмосфере Титана?
Читать дальшеИнтервал:
Закладка: