Фрэнк Вильчек - Тонкая физика. Масса, эфир и объединение всемирных сил
- Название:Тонкая физика. Масса, эфир и объединение всемирных сил
- Автор:
- Жанр:
- Издательство:Питер
- Год:2017
- Город:СПб.
- ISBN:978-5-496-02934-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Фрэнк Вильчек - Тонкая физика. Масса, эфир и объединение всемирных сил краткое содержание
Великолепный рассказ о единстве материи и энергии, об элементарных частицах и их взаимодействиях — в этом шедевре серьезной научно-популярной литературы.
Тонкая физика. Масса, эфир и объединение всемирных сил - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Максвелл обнаружил, что его новые уравнения, известные сегодня как уравнения Максвелла, имели такого рода чисто полевые решения, которые распространяются в пространстве со скоростью света. В кульминации процесса великого синтеза он пришел к выводу о том, что эти самовоспроизводящиеся возмущения в электрических и магнитных полях представляют собой свет, и этот вывод выдержал испытание временем. Для Максвелла эти поля, которые заполняют все пространство и живут своей собственной жизнью, являлись осязаемым символом величия Господа:
«Обширные межпланетные и межзвездные области больше не будут рассматриваться в качестве пустых мест во Вселенной, которые Творец не посчитал нужным заполнить символами многообразия порядка Своего царства. Мы обнаружим, что они уже заполнены замечательной средой; настолько заполнены, что никакая человеческая сила не в состоянии изъять ее из самой маленькой части Пространства или хотя бы в малой степени нарушить ее бесконечную непрерывность».
Отношения Эйнштейна с эфиром были сложными и менялись с течением времени. Кроме того, я думаю, что они были плохо поняты даже его биографами и историками науки (вполне возможно, и мной). В своей первой работе 1905 года, посвященной специальной теории относительности [22] Во второй был введен второй закон Эйнштейна. — Примеч. авт.
, под названием «К электродинамике движущихся тел» он писал:
«Введение „светоносного эфира“ окажется при этом излишним, поскольку в предлагаемой теории не вводится „абсолютно покоящееся пространство“, наделенное особыми свойствами, а также ни одной точке пустого пространства, в котором протекают электромагнитные процессы, не приписывается какой-нибудь вектор скорости».
Это сильное заявление Эйнштейна озадачивало меня в течение длительного времени по следующей причине. В 1905 году проблемой физики было не отсутствие теории относительности. Проблема заключалась в существовании двух взаимно противоречивых теорий относительности. С одной стороны, была теория относительности механики, подчинявшаяся уравнениям Ньютона. С другой — теория относительности электромагнетизма, подчинявшаяся уравнениям Максвелла.
Обе эти теории относительности показали, что их соответствующие уравнения демонстрируют буст-симметрию, то есть эти уравнения принимают одну и ту же форму, когда вы добавляете ко всему общую, суммарную скорость. Выражаясь в физических терминах, законы физики (выраженные уравнениями) выглядят одинаково для любых двух наблюдателей, движущихся с постоянной скоростью относительно друг друга. Тем не менее, чтобы переключиться с описания мира одного наблюдателя на описание другого, вам придется переобозначить положения и моменты времени. Например, наблюдатель, находящийся в самолете, летящем из Нью-Йорка в Чикаго, спустя несколько часов определит Чикаго как «расстояние 0», в то время как Чикаго по-прежнему будет обозначаться как «расстояние 500 миль к западу» (примерно) для наблюдателя на земле. Проблема заключалась в том, что переобозначение, необходимое для механической относительности, отличалось от переобозначения, требующегося для электромагнитной относительности. Согласно механической теории относительности, вы должны переобозначить пространственные положения, но не моменты времени; в то время как в соответствии с электромагнитной теорией относительности вы должны переобозначить и то и другое гораздо более сложным образом, смешав их вместе. (Уравнения относительности для электромагнетизма к 1905 году уже были выведены Лоренцем и усовершенствованы Анри Пуанкаре; сегодня они известны как преобразования Лоренца.) Великое новшество работы Эйнштейна заключалось в утверждении примата относительности электромагнитных явлений и выработке следствий для остальной части физики.
Итак, изменения требовала почтенная теория ньютоновской механики, а не «выскочка»-теория электромагнетизма. Позиции сдала теория, основанная на частицах, движущихся в пустом пространстве, а не теория, базирующаяся на непрерывных, заполняющих пространство полях. Специальная теория относительности не модифицировала уравнения поля Максвелла; напротив, они служили ей фундаментом. Заполняющие пространство, способные самовосстанавливаться электрические и магнитные поля по-прежнему имели место, что приводило Максвелла в восторг. Действительно, идеи специальной теории относительности практически требуют заполняющих пространство полей и в этом смысле объясняют, почему они существуют, как мы увидим далее.
Почему же тогда Эйнштейн так сильно выражал противоположное мнение? Он подорвал старые идеи о механическом эфире, который в соответствии с законами Ньютона состоял из частиц, — действительно, он совершенно разрушил эти законы. Однако вместо того, чтобы устранить заполняющие пространство поля, его новая теория повысила их статус. Он мог бы с большей справедливостью сказать (я всегда так думал), что идея эфира, который выглядит по-разному для движущихся наблюдателей, ошибочна, однако преобразованный эфир, который выглядит одинаково для наблюдателей, движущихся с постоянной скоростью относительно друг друга, является естественной предпосылкой для специальной теории относительности.
Во время работы над специальной теорией относительности в 1905 году Эйнштейн также размышлял над проблемой световых квантов (того, что позднее стало известно под этим названием). Несколькими годами ранее, в 1899 году, Макс Планк впервые выдвинул идею о том, что в конечном итоге превратилось в квантовую механику. Планк предположил, что атомы могут обмениваться энергией с электромагнитным полем, то есть излучать и поглощать электромагнитное излучение, например свет, только в виде дискретных единиц, или квантов. Используя эту идею, он смог объяснить некоторые экспериментальные факты, касающиеся излучения черного тела. (Очень грубо говоря, проблема заключается в том, как цвет горячего тела, вроде раскаленной кочерги или сияющей звезды, зависит от его температуры. Выражаясь менее туманно, но все еще недостаточно точно, горячее тело испускает целый спектр цветов с различной степенью интенсивности. Задача состояла в описании всего спектра степеней интенсивности и его изменения в зависимости от температуры.) Идея Планка работала эмпирически, но она не являлась достаточно удовлетворительной в интеллектуальном отношении. Она была просто «пристегнута» к другим законам физики, а не выведена из них. В самом деле, как Эйнштейн (но не Планк) четко осознал, идея Планка противоречила прочим законам.
Другими словами, идея Планка была еще одной из тех вещей, вроде исходной кварковой модели или партонов, которые работают на практике, но не в теории. Она не была приемлема ни для Чикагского университета, ни для Эйнштейна. Однако Эйнштейн был очень впечатлен тем, как идея Планка объясняла результаты экспериментов. Он расширил ее в новом направлении, сформулировав гипотезу о том, что не только атомы испускают и поглощают свет (и электромагнитное излучение в целом) в виде дискретных единиц энергии, но и сам свет всегда поступает в виде дискретных единиц энергии, а также переносит дискретные единицы импульса. Благодаря этим дополнениям Эйнштейн смог объяснить больше фактов и предсказать новые, включая фотоэлектрический эффект (фотоэффект), ставший основной работой, за которую в 1921 году ему была присуждена Нобелевская премия. Эйнштейн считал, что разрубил гордиев узел: идея Планка не согласуется с существующими физическими законами, но она работает, следовательно, эти законы неверны!
Читать дальшеИнтервал:
Закладка: