Фрэнк Вильчек - Тонкая физика. Масса, эфир и объединение всемирных сил
- Название:Тонкая физика. Масса, эфир и объединение всемирных сил
- Автор:
- Жанр:
- Издательство:Питер
- Год:2017
- Город:СПб.
- ISBN:978-5-496-02934-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Фрэнк Вильчек - Тонкая физика. Масса, эфир и объединение всемирных сил краткое содержание
Великолепный рассказ о единстве материи и энергии, об элементарных частицах и их взаимодействиях — в этом шедевре серьезной научно-популярной литературы.
Тонкая физика. Масса, эфир и объединение всемирных сил - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Главный вызов, стоящий перед подходом «все из бита», заключается в нахождении математических структур, которые отражают сознательный опыт и гибкий интеллект, словом, в создании думающих компьютеров. Это еще не достигнуто, и люди до сих пор спорят, возможно ли такое [35] Конечно, это возможно. — Примеч. авт.
.
Наиболее впечатляющее достижение подхода «все из бита» я описал в данной главе. Алгоритмы КХД позволяют нам запрограммировать компьютеры на производство огромного количества протонов, нейтронов и всей пестрой компании сильно взаимодействующих частиц. Вот уж воистину, все из бита!
В качестве бонуса мы получили эффект, выражаемый другим афоризмом Уилера: «масса без массы». Строительными блоками протонов и нейтронов, как показали результаты описанных в главе 6 экспериментов, являются строго безмассовые глюоны и почти безмассовые кварки. (Вес соответствующих кварков, u и d , составляет около 1 % от веса образуемых ими протонов.)
В Брукхейвенской национальной лаборатории на Лонг-Айленде, а также в ряде других центров по всему миру есть специальные комнаты, куда редко заходят люди. Кажется, что в этих комнатах не происходит ничего особенного, там нет никакого видимого движения, только тихий шум вентиляторов, которые поддерживают стабильную температуру и низкий уровень влажности. В этих комнатах работают около 10 30протонов и нейтронов. Они организованы в сотни работающих параллельно компьютеров. Их производительность измеряется терафлопами, что соответствует 10 12(миллион миллионов) операций в секунду (флопс). Мы позволяем им работать в течение месяцев — 10 7секунд. К концу этого периода им удается то, что один протон делает каждые 10 –24секунды, то есть вычислить, как наилучшим образом следует организовать кварковые и глюонные поля, чтобы они поддерживали стабильность Сетки и обеспечивали устойчивое равновесие.
Почему это так трудно?
Сетка — суровая дама.
Если точнее, то она очень сложна. У нее много настроений, и они часто меняются.
Квантовая механика работает с волновыми функциями, которые представляют собой множество возможных конфигураций полей, а наши классические компьютеры могут обрабатывать только одну конфигурацию за один раз. Для имитации взаимодействия многих конфигураций, которые в квантовом описании присутствуют одновременно, классический компьютер должен делать следующее.
1. Производить вычисления в течение длительного времени для создания этих конфигураций.
2. Хранить их.
3. Соотносить свои старые данные с текущим содержимым.
В сущности, в данном случае цель не оправдывает средства. Если квантовые компьютеры станут доступны, мы окажемся в лучших условиях. Более того, то, что мы пытаемся вычислить — наблюдаемые частицы, — создают лишь небольшую рябь в бурном море флуктуирующей Сетки. Для нахождения числовых характеристик частиц мы должны моделировать все море, а затем выискивать небольшие возмущения.
Игрушечная модель в тридцати двух измерениях
Когда я был маленьким, мне нравилось собирать и разбирать пластиковые модели ракет. Эти модели не могли доставлять спутники на орбиту, не говоря уже о том, чтобы доставить кого-нибудь на Луну. Однако это были вещи, которые я мог держать в руках и с которыми мог играть, а еще они развивали мое воображение. Они были построены в масштабе, и к ним прилагался маленький пластиковый человечек в том же масштабе, что позволяло мне оценить соотношение размеров, понять разницу между перехватчиком и ракетой-носителем, а также разобраться с некоторыми ключевыми понятиями вроде полезной нагрузки и съемных ступеней. Игрушечные модели могут быть интересными и полезными.
Аналогичным образом, для понимания сложных концепций или уравнений могут пригодиться игрушечные модели. Хорошая игрушечная модель создает некоторое представление о реальной вещи, но является достаточно небольшой, чтобы мы могли охватить ее своим сознанием.
В следующих нескольких абзацах я покажу вам игрушечную модель квантовой реальности. Это очень упрощенная модель, но я считаю, что она достаточно сложна, чтобы передать обширность того, что она представляет. Суть в том, что квантовая реальность является ОЧЕНЬ, ОЧЕНЬ БОЛЬШОЙ [36] Если вы готовы поверить мне на слово и предпочитаете избежать сложных деталей, можете сразу перейти к разделу «Большая числодробилка». — Примеч. авт.
. Мы создадим игрушечную модель, которая описывает жизнь спинов всего пяти частиц, и обнаружим, что она заполняет пространство 32 измерений.
Начнем с одной квантовой частицы, которая имеет минимальную величину спина. Мы абстрагируемся от всех остальных ее свойств (то есть игнорируем их). Полученный объект называется квантовым битом или кубитом. (Для экспертов: холодный электрон, захваченный в определенном пространственном состоянии, например, с помощью подходящих электрических полей, по сути, является кубитом.) Спин кубита может быть направлен по-разному. Мы напишем: для состояния, когда спин кубита определенно направлен вверх, и:
для состояния, когда спин кубита определенно направлен вниз.
Кубит также может находиться в состояниях, при которых спин направлен в сторону, и именно здесь начинается все самое интересное. Именно здесь, на данном этапе проявляется основная странность квантовой механики.
Состояния, когда спин направлен в сторону, не являются новыми, независимыми. Эти и все другие состояния кубита представляют собой комбинации состояний и
, которые у нас уже есть. Например, состояние, при котором спин направлен на восток, выражается так:
.
Состояние, в котором спин определенно указывает на восток, представляет собой смесь из равных частей северного и южного направлений. При измерении спина в горизонтальном направлении вы всегда будете обнаруживать, что он указывает на восток. Однако если вы измеряете спин в вертикальном направлении, вы с равной вероятностью обнаруживаете, что он указывает либо на север, либо на юг. В этом и заключается смысл этого странного уравнения. Если более подробно, то правило для вычисления вероятности обнаружения определенного результата (спин вверх или спин вниз) при измерении спина в вертикальном направлении заключается в возведении в квадрат множителя, который стоит перед этим состоянием. В данном случае, например, число умножает состояние «спин вверх», поэтому вероятность обнаружения состояния «спин вверх» составляет
.
Интервал:
Закладка: