Лоуренс Краусс - Страх физики. Сферический конь в вакууме
- Название:Страх физики. Сферический конь в вакууме
- Автор:
- Жанр:
- Издательство:Питер
- Год:2016
- Город:СПб.
- ISBN:978-5-496-02066-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Лоуренс Краусс - Страх физики. Сферический конь в вакууме краткое содержание
Страх физики. Сферический конь в вакууме - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Суть в том, что математика представляет собой набор утверждений и выводов, подчиненных правилам логики. Например, Иоганн Кеплер в начале XVII века, проанализировав множество наблюдательных данных, пришел к выводу, что планеты движутся вокруг Солнца особым образом. Если соединить планету с Солнцем отрезком прямой, то этот отрезок будет за одинаковые промежутки времени «заметать» одинаковые площади. Математически можно показать, что из этого утверждения следует, что, когда планета находится ближе к Солнцу, она движется по своей орбите быстрее, чем когда она находится дальше. Ньютон, в свою очередь, показал, что открытый Кеплером закон может быть строго математически получен из приведенных выше формулировок закона всемирного тяготения и второго закона Ньютона.
Попробуйте, если сумеете, вывести второй закон Кеплера из законов Ньютона, используя только правила английского (или русского) языка… Но при помощи математики, в данном случае на основе простых геометрических соображений, вы сделаете это за несколько минут. За подробностями обратитесь к «Математическим началам натуральной философии» Ньютона, а еще лучше — прочитайте замечательную книгу Фейнмана «Характер физических законов».
Ключевой момент этой истории состоит в том, что Ньютон, возможно, никогда не сумел бы вывести закон всемирного тяготения, если бы не соединил при помощи математики открытый Кеплером закон движения планет с предположением, что между планетами и Солнцем действует сила притяжения. Этот момент является решающим для развития науки. Не имея математической основы под натуральной философией, к которой во времена Ньютона относили физику, невозможно построить логичную и согласованную теорию. Синтез математических выводов с наблюдаемой физической реальностью имеет основополагающее значение для построения научной картины реальности.
Я думаю, что вполне уместной будет литературная аналогия. Работая над этой главой, я читал роман канадского писателя Робертсона Дэвиса «Пятый персонаж». В нескольких предложениях он кратко суммирует то, что произошло с его персонажем: «Солдаты пришли в крайнее изумление, что я способен на такие вещи, чем привели в крайнее изумление меня самого… В их головах просто не укладывалось, что человек может иметь и другую, вроде бы совсем противоположную грань. Мне кажется, что я всегда считал самоочевидным, что каждый человек имеет по крайней мере две — если не двадцать две — грани…» [9] Цитируется по переводу М. Пчелинцева: Робертсон Дэвис. Пятый персонаж. — СПб.: Азбука-классика, 2001.
Позвольте теперь пояснить, к чему я привел эту цитату, на личном примере. Одной из многих вещей, которые я приобрел благодаря своей жене, было открытие новых способов видения мира. Мы вышли из совершенно разных слоев общества. Она родилась в маленьком городке, а я — в мегаполисе. Те, кто, подобно мне, вырос в мегаполисе, склонны воспринимать окружающих не так, как те, кто вырос в небольшом городке. Подавляющее большинство людей, которых вы встречаете ежедневно в большом городе, фигурально выражаясь, «одномерны». Вы воспринимаете мясника как мясника, почтальона как почтальона, врача как врача и так далее. Но в маленьком городке вам не удастся встретить просто мясника или просто почтальона, потому что все они, помимо всего прочего, еще и ваши соседи. Врач может по совместительству оказаться горьким пьяницей, а живущий напротив бабник — прекрасным учителем английского языка в местной школе. Подобно главному герою романа Дэвиса, я открыл для себя, что люди не могут быть легко классифицированы на основании какой-нибудь одной черты характера или рода занятий. Только когда осознаешь всю многогранность человека, получаешь возможность понять его.
Аналогично, каждый физический процесс во Вселенной — «многомерен». Только охватив взглядом множество, на первый взгляд, различных, а на самом деле эквивалентных описаний какого-нибудь явления, можно понять, «как это работает». Мы не способны понять природу, наблюдая только одну ее сторону. Хорошо это или плохо, но только математические соотношения позволяют нам увидеть целое на фоне частей, увидеть лес за деревьями. Математика позволяет представить сложный мир в виде простого сферического коня.
В каком-то смысле математика усложняет мир, открывая нам разные грани реальности. Но, поступая таким образом, она в действительности упрощает его для нашего понимания. Нет необходимости держать в голове одновременно все грани реальности, математика позволяет легко переходить от одной грани к другой. Если роль физики состоит в том, чтобы сделать для нас более понятной природу, то роль математики в том, чтобы сделать для нас более понятной физику.
Позволяя описать одно и то же явление разными способами, математика открывает для нас новые пути исследования природы, позволяя взглянуть на что-то давно известное с новой стороны. Кроме того, каждая новая грань реальности открывает возможность расширения наших представлений за пределы известного явления, приводя к новым открытиям. Было бы упущением с моей стороны не привести один известный пример, который не перестает восхищать меня вот уже двадцать пять лет, с тех пор, как я впервые узнал его от Фейнмана.
Речь пойдет о таком всем знакомом, но вместе с тем загадочном явлении, как мираж. Любой, кто когда-либо ехал на автомобиле в жаркий день по длинному прямому участку шоссе, наблюдал, как впереди то и дело возникают, а при приближении пропадают лужи, в которых отражается небо и окружающий пейзаж. Это менее экзотический вариант того, что видят бредущие через пустыню путники, бросающиеся к иллюзорному озеру, которое исчезает при их приближении.
Существует стандартное объяснение возникновения миража, заключающееся в том, что световые лучи преломляются, проходя границу двух сред. Это, в частности, объясняет, почему, стоя в воде, вы выглядите меньше ростом. Лучи света преломляются, пересекая поверхность воды, и вы видите собственные ступни выше, чем они расположены на самом деле:

Когда свет выходит из более плотной среды в менее плотную, как показано на рисунке (проходит путь от ваших ног в воде до ваших глаз в воздухе), он всегда преломляется в сторону более плотной среды. Если угол, под которым свет падает на границу сред, слишком большой, то свет вообще не выходит из более плотной среды, а испытывает полное внутреннее отражение. В результате акула, собирающаяся перекусить вами, оказывается скрытой от вашего взора.
В знойный день воздух над поверхностью дороги сильно нагревается и становится гораздо менее плотным. По мере удаления от разогретого асфальта воздух становится холоднее, и его плотность увеличивается. Когда луч света, приходящего от неба, приближается к поверхности дороги, он попадает во все более и более разреженные слои воздуха и испытывает преломление, отклоняясь в сторону более плотного, то есть холодного воздуха, пока не отразится обратно вверх.
Читать дальшеИнтервал:
Закладка: