Роман Подольный - Чем мир держится?
- Название:Чем мир держится?
- Автор:
- Жанр:
- Издательство:Знание
- Год:1978
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роман Подольный - Чем мир держится? краткое содержание
В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.
Чем мир держится? - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Теоретики — тут большую роль играют советские ученые, группирующиеся вокруг академика Я. Б. Зельдовича, — стали рассчитывать, какие именно волны, какой длины и всплесками какой продолжительности должны приходить на Землю от гравитационных источников разного типа. Такие расчеты были проделаны, например, для шарового скопления, содержащего примерно миллиард сверхплотных звезд (пульсаров, черных дыр). Гравитационные волны должны были излучаться при пролете звезд на близком расстоянии друг от друга и при их столкновениях.
Для приема излучения от такого скопления надо настроить детектор на частоту сто герц (длина волны — три тысячи километров). При этом чувствительность гравитационной антенны должна быть достаточной, чтобы зарегистрировать амплитуду колебаний в десять в минус шестнадцатой степени сантиметра за одну сотую секунды.
Самые мощные из предполагаемых источников гравитационных волн — черные дыры с массою в миллион или миллиард солнечных масс. Точнее говоря, не сами дыры, а процессы их образования, если схлопывание звезд имеет несимметричный характер, если вещество звезды устремляется к центру ее неравномерно с разных сторон. Но черные дыры — все-таки гипотетические объекты. То же относится к процессам, при которых они образуются. Реальнее рассчитывать на волны, идущие от нейтронных звезд, масса которых не может быть намного больше солнечной.
Гравитационные антенны придется изолировать не только от сейсмических и акустических шумов, но и от магнитных воздействий любого типа, и, что труднее всего, от тепловых шумов. Тут надо будет работать при максимально низкой температуре, в гигантских холодильниках.
Большие возможности открывает космос.
Надо вынести две массы, составляющие гравитационную антенну, за пределы атмосферы — конечно, на спутниках. Желательно на спутниках, свободных от сноса. Здесь длину антенны, расстояние между пробными массами можно сделать сколь угодно большой — скажем, размером с радиус земной орбиты или еще больше.
Такая антенна будет предназначена для сверхдлинных гравитационных волн.
«Обычно экспериментаторы интуитивно отдают предпочтение лабораторным земным вариантам опыта по сравнению с космическими», — пишут по этому поводу В. Б. Брагинский и В. Н. Руденко. Причина понятна. Космические эксперименты дороги. Но в случае с гравитационными волнами и лабораторные эксперименты весьма недешевы. А на разработку надежных систем защиты от всевозможных шумов и необходимое повышение точности измерений в лаборатории требуется, по мнению оптимистов, минимум пять лет, чтобы стал реален «опыт Герца». Пессимисты увеличивают срок втрое. Между тем космическую антенну нужной чувствительности можно запустить в принципе в самое ближайшее время. Можно даже использовать космические станции обычного типа, то есть несвободные от сноса, расположив их соответствующим образом и применив изощренные методы отсеивания влияний, не относящихся к делу, с помощью расчетов.
Как ни велики надежды на космос, разрабатываются все новые наземные варианты антенн.
Так, в конце пятидесятых годов М. Е. Герценштейн указал вот еще на какую возможность. Свет и радиоволны, проходя через магнитное поле, должны порождать гравитационные волны. Причем эти волны имеют очень высокую частоту — ту же, что сами электромагнитные колебания, их породившие.
КПД превращения здесь значительно выше, чем в случае с механическими колебаниями. Например, энергия гравитационных волн, вызванных к жизни электромагнитным излучением звезд в межзвездных магнитных полях, должна быть меньше энергии электромагнитного излучения лишь в десять в шестнадцатой степени раз. Довольно «энергичны» должны быть и гравитационные волны, возбуждающиеся при проходе видимого и невидимого света через внутризвездное магнитное поле.
Во время термоядерных реакций в недрах звезд, в том числе и Солнца, постоянно возникает жесткое электромагнитное излучение. По дороге к поверхности звезды оно идет через ее магнитное поле — опять-таки появляются гравитационные волны.
То обстоятельство, что свет в магнитном поле может порождать гравитационные волны, открывает возможность создания их излучателя.
Тут появляется, в частности, — в очень далекой перспективе, конечно, — и возможность создания «гравитационного лазера». В обычных лазерах мы получаем очень узкие направленные пучки света. Гравитационные волны, порожденные таким лазером, тоже будут идти узким пучком. КПД превращения электромагнитных волн в гравитационные пропорционален квадрату напряженности магнитного поля и квадрату длины пути света в этом поле. Такая зависимость считается очень выгодной. Ведь каждый шаг вперед в усилении поля и увеличении его размеров дает эффект, возведенный в квадрат. Достаточно усилить напряженность поля в десять раз, и в сто раз большая доля энергии света перейдет в гравитационное излучение. А если при этом удастся в десять раз удлинить дорогу света через поле, то уже можно говорить в общей сложности о десятитысячекратном увеличении. Но десять тысяч — это только десять в четвертой степени. Немного рядом с величинами, характеризующими гравитационные волны.
Но это все-таки один из путей, открытых науке. А может быть, удастся найти физические процессы, которые надут гораздо больший КПД превращения света в волны тяготения?
Пока же ученые работают над использованием в гравитехнике уже известных процессов.
Сейчас появилось большое количество конкретных проектов гравитационных антенн на этой основе.
Л. П. Грищук и М. В. Сажин детально разработали проект излучателя, в котором колебания электромагнитного поля создают пучок гравитационных волн.
Казанские физики У. X. Копвиллем и В. Р. Нагибаров уже давно предложили идею создания своего рода гравитационного лазера, где должны складываться вместе излучения десяти секстильонов элементарных источников. К сожалению, идея пока недостаточно разработана даже в чисто теоретическом плане.
А. А. Соколов, Д. В. Гальцов и Ю. В. Грац предлагают использовать для генерации гравитационных волн движение электронов в плазме…
Новые типы механических приемников и излучателей предлагаются В. Б. Брагинским и В. Н. Руденко.
Словом, идей много. И если до их конкретного воплощения в жизнь достаточно далеко и стоить это будет большого труда, то зато перспективы здесь необъятны.
…Простым глазом в самую звездную ночь увидишь в небе лишь несколько тысяч светящихся точек. Телескопы резко умножили число звезд, то же сделали затем радиотелескопы. И все-таки эта открывающаяся нам бездна, что звезд полна, должна быть полна ими в еще большей степени. Задумаемся вот над каким фактом. Мы видим только те космические тела, что светятся своим или отраженным светом, те тела, что посылают нам электромагнитные волны. (Радиозвезды в конце концов излучают те же электромагнитные волны, только другой, не световой частоты.)
Читать дальшеИнтервал:
Закладка: