Пол Хэлперн - Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания
- Название:Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания
- Автор:
- Жанр:
- Издательство:Питер
- Год:2016
- Город:СПб.
- ISBN:978-5-496-01861-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Пол Хэлперн - Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания краткое содержание
Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.
Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг. В круг его интересов попадает всё — время и пространство, множественные измерения, темные материя и энергия, космология. Его последняя книга повествует о том, как Альберт Эйнштейн и Эрвин Шрёдингер сражались с несовершенством и недетерминированностью квантовой механики, пытаясь создать теорию поля, которая объединила бы все силы природы и потеснила квантовую странность. К сожалению, оба потерпели фиаско.
Сможет ли кто-то из современных ученых превзойти гениев прошлого? Найдется ли новый Эйнштейн, который сможет воплотить его мечту о единой физической теории в жизнь?
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В последующих работах по специальной теории относительности Эйнштейн показал, что происходит с массой при движении с большими скоростями. Он предположил, что релятивистская масса эквивалентна энергии и они связаны знаменитым уравнением Е = тс 2. Пока объект не движется, он обладает только массой покоя — его врожденной характеристикой, так сказать. По мере того как он разгоняется, его масса, связанная с его энергией движения, увеличивается. И чем ближе его скорость к скорости света, тем больше его масса. Но чтобы разогнать объект до скорости света, потребуется преобразовать в массу бесконечное количество энергии, а это невозможно. Таким образом, для материальных тел скорость света недостижима (если только объект уже не движется с такой скоростью).
Союз пространства и времени
После того как Эйнштейн опубликовал свои потрясающие результаты, немецкое научное сообщество наконец-то обратило на него внимание. Но до всемирной славы было еще далеко. Одним из первых его сторонников стал физик Макс фон Лауэ, бывший тогда ассистентом Планка в Берлине. Летом 1906 года он нашел время, чтобы навестить Эйнштейна в патентном бюро. Он сидел в приемной, нетерпеливо ожидая встречи с удивительным наследником трона Ньютона.
Фон Лауэ вспоминал: «Молодой человек, вышедший встретить меня, выглядел настолько неожиданно для меня, что я не мог поверить в то, что это и есть создатель теории относительности. Так что я позволил ему пройти мимо, и лишь когда он вернулся из приемной, нас познакомили» {22} 22 Max von Laue, цит. по Seelig, Albert Einstein, 78.
.
Фон Лауэ много сделал для продвижения теории относительности Эйнштейна и изучения множества ее следствий. Он написал первый учебник по теории относительности, изданный в 1911 году. Эйнштейн высоко ценил его поддержку и дружбу, которая продлилась всю их жизнь.
Другим его сторонником оказался Минковский, кардинально изменивший мнение о бывшем студенте. Пораженный тем, что «лентяй» смог дать верную трактовку уравнениям Максвелла, Минковский решил переформулировать теорию более точным математическим языком. В то время он уже занимал пост профессора в «математической Мекке» — Гёттингене, где влиятельный логик и геометр Давид Гильберт занял место главного новатора в науке Клейна. В этом центре изучения всего, лежащего за пределами евклидовой геометрии, Минковский чувствовал себя на своем месте и использовал новейшие достижения математиков по максимуму.
Минковский гениально подметил, что теория Эйнштейна будет выглядеть значительно более изящно, если ее переформулировать в терминах четырехмерной геометрии. Он предложил альтернативу евклидову пространству, имеющую два ключевых отличия от последнего. Первое отличие заключалось в том, что в новое пространство помимо известных трех измерений: длины, ширины и высоты, было добавлено время (умноженное на скорость света, чтобы временную координату можно было выражать в тех же единицах измерения, что и пространственные координаты) в качестве четвертого измерения. Он назвал этот союз пространство-время.
Второе изменение связано с добавлением отрицательного слагаемого в теорему Пифагора, которая применяется для определения расстояний. Ее стандартная формулировка, используемая на протяжении тысячелетий для нахождения гипотенузы прямоугольного треугольника, гласит: сумма квадратов катетов прямоугольного треугольника равна квадрату его гипотенузы. Например, в прямоугольном треугольнике со сторонами, равными 3, 4 и 5, выполняется равенство: 3 2+ 4 2= 5 2. Минковский модифицировал эту теорему, чтобы включить в нее четвертое измерение — время. Он постулировал, что квадрат пространственно-временного интервала равен сумме квадратов пространственных координат минус квадрат четвертой координаты (времени, умноженного на скорость света). Пространственно-временной интервал — это кратчайший путь в четырехмерном пространстве, аналог расстояния между двумя точками в трехмерном пространстве, который учитывает наличие как пространственных, так и временных координат. Он характеризует, насколько близко расположены две точки четырехмерного пространства (то есть события, которые происходят в разных местах и в разное время), и равен длине наиболее короткого пути, связывающего эти две точки.
Численное значение пространственно-временного интервала между двумя событиями говорит о том, являются ли они причинно связанными, то есть может ли одно событие как-то повлиять на другое. Если пространственно-временной интервал равен нулю (такие интервалы называются светоподобными) или отрицателен (такие интервалы называются времениподобными), то более раннее событие может повлиять на более позднее. С другой стороны, если пространственно-временной интервал положителен (пространственноподобный), то между такими событиями причинно-следственные связи невозможны, так как для этого потребовался бы сигнал, распространяющийся быстрее света. Так что если некоторая актриса оденется в определенном стиле на церемонию вручения Оскара 2016 года, а ее коллега с Проксимы Центавра, расположенной в четырех световых годах от Земли, выберет такое же платье в 2017 году, то ее невозможно будет обвинить в подражательстве, поскольку интервал между этими событиями будет пространственноподобным, то есть не допускающим причинно-следственной связи. Любому сигналу потребовалось бы не менее четырех лет, чтобы преодолеть расстояние от Земли до Проксимы Центавра. Поэтому такой инцидент будет лишь космической случайностью.
С помощью новой формулировки специальной теории относительности как теории четырехмерного пространства-времени Минковский показал, что сокращение линейных размеров и замедление времени можно интерпретировать как поворот в четырехмерном пространстве, который преобразует время в пространство и обратно. Чтобы представить, как происходят такие повороты, подумайте о пространственно-временном интервале как о флюгере, у которого направление на север представляет собой время, а на восток — пространство. Поворот флюгера, например, с востоко-северо-востока на северо-северо-восток немного уменьшает его восточно-западную проекцию и увеличивает северно-южную. Аналогично, вращение интервала в четырехмерном пространстве-времени может уменьшить пространственное расстояние между некоторыми двумя событиями, но при этом увеличить временной разрыв между ними.
Минковский триумфально представил свои изыскания на 80-й ассамблее ученых-естествоиспытателей и физиков в Кёльне, особо отметив их революционность: «Взгляды на пространство и время, которые я хочу вам изложить, проистекают из экспериментальной физики, и в этом их сила. Они радикальны. С этого момента пространство и время как таковые вынуждены уйти в тень, и лишь их союз будет обладать подлинностью» {23} 23 Hermann Minkowski, речь, произнесенная 21 сентября 1908 г. на 80-й ассамблее натуралистов и физиков.
.
Интервал:
Закладка: