Олег Спиридонов - Людвиг Больцман: Жизнь гения физики и трагедия творца
- Название:Людвиг Больцман: Жизнь гения физики и трагедия творца
- Автор:
- Жанр:
- Издательство:Книжный дом «ЛИБРОКОМ»
- Год:2013
- Город:М.
- ISBN:978-5-397-04175-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Олег Спиридонов - Людвиг Больцман: Жизнь гения физики и трагедия творца краткое содержание
Книга рассчитана на широкий круг читателей, интересующихся историей развития физики; может быть полезна студентам и аспирантам физико-математических вузов.
Людвиг Больцман: Жизнь гения физики и трагедия творца - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В 1871 г. после упорного труда Больцман опубликовал работу «О тепловом равновесии многоатомных молекул», в которой рассматривал газ, находящийся во внешнем потенциальном силовом поле. Примером такого поля может служить поле сил тяжести, т. е. задача, решаемая ученым, обусловлена физической реальностью. Приведем конечный результат, полученный Больцманом. Распределение молекул газа по скоростям при воздействии на газ потенциального поля имеет следующий вид:

где U(x, y, z) — потенциальная энергия молекул газа в данном силовом поле, C и β — величины, зависящие от температуры газа.
Интересно сравнить полученное Больцманом распределение (12) с распределением Максвелла (7). Формулы отличаются лишь функцией U(x, y, z) в показателе экспоненты. При U(x, y, z) — 0 из распределения Больцмана получается распределение Максвелла, которое становится, таким образом, частным случаем полученного Больцманом более общего результата. Соотношение (12) получило в физике название распределения Максвелла — Больцмана.
Физические результаты, вытекающие из соотношений (7) и (12), принципиально различны. В отсутствие внешних сил разные положения молекул в пространстве равновероятны, и молекулы с одинаковой средней плотностью заполняют весь предоставленный им объем (рис. 8 а). Больцман установил, что когда газ находится во внешнем поле U(x, y, z), то наряду с тепловым движением молекул следует учитывать их потенциальную энергию. Это приводит к тому, что молекулы будут распределяться в сосуде неравномерно (рис. 8 б). Большая часть молекул будет сосредоточиваться в том месте, где их потенциальная энергия минимальна.
Результаты, полученные Больцманом, получили высокую оценку Максвелла: «Опубликованные мною в 1860 г. результаты подвергались затем более строгому исследованию доктора Л. Больцмана, применившего также свой метод к изучению движения сложных молекул».
Работа Больцмана допускала многочисленные физические применения. Так, если внешним полем является поле сил тяжести
где h — высота над поверхностью Земли, то из теории следует, что концентрация молекул будет уменьшаться с высотой по закону
где n 0— концентрация молекул на уровне моря, β — зависящий от температуры коэффициент. Соотношение (13) получило в физике название барометрической формулы. О ее исключительной важности говорит хотя бы тот факт, что позднее с ее использованием были впервые получены экспериментальные доказательства реальности существования атомов (об этом будет рассказано в третьей части книги).
Другим следствием теории явился полученный Больцманом вывод о том, что в вертикальном столбе газа температура не изменяется с высотой. Этот результат вызвал возражения со стороны учителя и друга Больцмана Й. Лошмидта, который увидел в этом дополнительный аргумент в пользу «тепловой смерти» Вселенной. Рассуждения Лошмидта были довольно просты — если температура в вертикальном столбе не изменяется, то в масштабе Вселенной это и будет означать признание ее «тепловой смерти». Не признавая этой теории, Лошмидт утверждал, что температура в столбе не может быть постоянной, а второе начало термодинамики во Вселенной должно нарушаться. В результате острой, но дружеской дискуссии, направленной на глубокий анализ основ теории, Больцман доказал ошибочность утверждений своего оппонента.
Однако до полного признания распределения Максвелла, теперь уже распределения Максвелла — Больцмана, было еще далеко. Напомним, что вывод Максвелла был далеко не строгим. В таких случаях всегда возникают вопросы: «Единственно ли найденное распределение?» или «Не будет ли получен в результате более строгого вывода иной результат?» Конечно, можно было бы попытаться проверить найденное соотношение в эксперименте, но техника того времени еще не позволяла надеяться на подобную проверку.
Первую попытку доказательства единственности распределения выполнил сам Максвелл. Интересен ход его рассуждений. Если газ находится в состоянии термодинамического равновесия, то в нем установилось не меняющееся со временем — стационарное — распределение частиц по скоростям. Если v и v’ — скорости частиц до и после столкновения, то на первый взгляд возрастание числа частиц со скоростями v’ должно точно следовать за уменьшением числа частиц со скоростями v. Однако следует учитывать и то, что после столкновения частицы могут иметь и другую скорость . Процесс изменения скоростей, полагал Максвелл, будет продолжаться до тех пор, пока ряд скоростей v, v’ , v”,… снова не придет к скорости v. Обмен между частицами, имеющими различные скорости из этого ряда, приводит к тому, что число частиц, имеющих данную скорость, сохраняется постоянным, а из этого следует, что полученное распределение будет единственным.
Эти рассуждения не кажутся Больцману убедительными. В работе «Дальнейшее изучение теплового равновесия молекул газа» (1872) он приводит ряд возражений против доказательства Максвелла и дает строгий вывод распределения. Больцман видит принципиальные погрешности доказательства Максвелла в рассмотрении изменения скорости отдельной частицы, в то время как в процессе столкновений участвуют и одновременно изменяют свои скорости как минимум две молекулы. Стационарное распределение молекул по скоростям, отмечает Больцман, возникает и поддерживается именно в результате таких парных столкновений. Если же соударений нет, то однажды заданное распределение будет сохраняться сколь угодно долго, а значит, допускается возможность любого произвольного распределения. Больцман также не согласен с утверждением Максвелла о том, что ряд скоростей v, v’, v”,… , v имеет одностороннюю направленность, поскольку обратные переходы v,… , v”, v’ , v будут происходить так же часто, как и прямые.
Больцман дает строгий и изящный вывод закона распределения. Он рассматривает не переходы между скоростями одной частицы v → v’ , v → v”, а такие переходы, когда скорости двух молекул до столкновения v 1 и v 2 заменяется на их скорости после столкновения v 1’ и v 2’ . В условиях равновесия прямые переходы v 1,v 2 → v 1’,v 2’ происходят так же часто, как и обратные v 1’,v 2’ → v 1,v 2. Вывод Больцмана, занимающий всего одну страницу, можно встретить без изменений во многих современных учебниках физики.
В статьях 1872 и 1875 гг. Больцман еще более расширяет области применения полученного распределения, применяя его к многокомпонентным газам. Распределение Максвелла — Больцмана получает, таким образом, в этом цикле работ прочное теоретическое обоснование. Только сравнение с экспериментальными данными могло теперь заставить усомниться в справедливости формул. И все же строгий вывод закона распределения оставлял нерешенной проблему доказательства его единственности. Больцман решил и эту проблему, но на принципиально ином пути.
Читать дальшеИнтервал:
Закладка: