Уолтер Левин - Глазами физика. От края радуги к границе времени

Тут можно читать онлайн Уолтер Левин - Глазами физика. От края радуги к границе времени - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Манн, Иванов и Фербер, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Глазами физика. От края радуги к границе времени
  • Автор:
  • Жанр:
  • Издательство:
    Манн, Иванов и Фербер
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    978-5-00100-387-8
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Уолтер Левин - Глазами физика. От края радуги к границе времени краткое содержание

Глазами физика. От края радуги к границе времени - описание и краткое содержание, автор Уолтер Левин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В книге не менее яркой, чем его знаменитые лекции, профессор Левин рассказывает о самых необычных и интересных гранях физики, о чудесах, которые творятся каждый день вокруг нас, – например, о том, почему ударяет молния. О чем бы ни решил рассказать автор, ему всегда удается совместить обучение с развлечением.
Книга предназначена для студентов и преподавателей, а также для всех, кто хочет изучать физику с удовольствием и интересом.
На русском языке публикуется впервые.

Глазами физика. От края радуги к границе времени - читать онлайн бесплатно полную версию (весь текст целиком)

Глазами физика. От края радуги к границе времени - читать книгу онлайн бесплатно, автор Уолтер Левин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

На YouTube много забавных и информативных видео, посвященных этой новой технологии. В одном из них мальчик подвешивает в воздухе автоматический карандаш с помощью шести магнитов и куска пластилина; эту демонстрацию вы легко можете воспроизвести в домашних условиях: www.youtube.com/watch?v=rrRG38WpkTQ&feature=related. Но непременно посмотрите еще одно видео, где используется конструкция со сверхпроводником. В нем показана модель вагона поезда, летящая по путям, и даже есть небольшой анимированный пояснительный раздел: www.youtube.com/watch?v=GHtAwQXVsuk&feature=related.

Однако моя наилюбимейшая демонстрация maglev-технологии – замечательный маленький волчок, известный как левитрон. Вы можете увидеть разные версии на сайте www.levitron.com. У меня в кабинете хранится одна из ранних моделей, приводящая в восторг сотни моих посетителей.

Поезда на магнитной подвеске обладают также неоспоримым преимуществом с точки зрения защиты окружающей среды – они относительно эффективно используют электричество и не выделяют при выхлопе газов, вызывающих парниковый эффект. Но их использование, увы, затратно. Поскольку большинство колей для маглевов несовместимы с существующими железнодорожными линиями, строительство этих систем требует огромных авансовых капиталовложений, чем и объясняется тот факт, что они до сих пор не нашли широкого коммерческого применения ни в одной стране мира. А между тем разработка более эффективных и экологически чистых систем массового транспорта, нежели имеющиеся ныне, – абсолютное условие нашего дальнейшего выживания, если только мы не хотим сварить всмятку свою собственную планету.

Максвелл и его экстраординарное достижение

По мнению многих физиков, Джеймс Клерк Максвелл – один из самых великих физиков всех времен, уступающий, возможно, только Ньютону и Эйнштейну. Это ученый внес вклад в широчайший диапазон областей физики, от анализа колец Сатурна до исследования поведения газов, термодинамики и теории цвета. Но самым значимым достижением Максвелла стали четыре уравнения, описывающие и связывающие электричество с магнетизмом, известные ныне как уравнения Максвелла. Хотя они кажутся простыми, в их основе лежат довольно сложные математические концепции. Если вас не пугают интегралы и дифференциальные уравнения, пожалуйста, посмотрите мои лекции или поищите их в интернете, чтобы лучше с ними познакомиться. А мы с вами в рамках данной книги ограничимся более простым обсуждением достижений Максвелла.

Прежде всего он объединил теорию электричества и магнетизма, показав, что, по сути, это не два отдельных явления, а одно – электромагнетизм – только с разными проявлениями. За одним чрезвычайно важным исключением четыре уравнения Максвелла не являются его «законами» или изобретениями, в той или иной форме они существовали и до него. Но именно Максвелл объединил их в то, что теперь принято называть теорией электромагнитного поля.

Первое уравнение – это закон Гаусса для электричества, описывающий взаимосвязь между электрическими зарядами и силой и распределением создаваемых ими электрических полей. Второе уравнение – закон Гаусса для магнетизма – самое простое из четырех и касается сразу нескольких аспектов. В частности, данный закон не допускает существования магнитных монополей. У магнита всегда есть северный и южный полюс (мы называем их диполями), в отличие от электроэнергии, что делает возможными электрические монополи (монополь – это либо положительно, либо отрицательно заряженная частица). Если вы разломаете магнит (у меня на холодильнике их много) на две части, каждая из них будет иметь северный и южный полюс, а если разбить магнит на десять тысяч кусочков, то северный и южный полюс будет у каждого обломка. И способа остаться в итоге с магнитом только с северным магнитным полюсом в одной руке и только с южным магнитным полюсом в другой не существует. А вот если у вас есть электрически заряженный объект (например, положительно) и вы разобьете его на две части, то обе могут быть заряжены положительно.

А дальше начинается нечто действительно интересное. Третье уравнение Максвелла – это уже закон Фарадея, описывающий, как переменные магнитные поля приводят к созданию электрического поля. Совершенно очевидно, что именно этот закон послужил теоретической основой для электрогенераторов, о которых я рассказывал ранее. И наконец, последнее уравнение – это закон Ампера, модифицированный Максвеллом с помощью очень важного уточнения. Оригинальный закон Ампера гласил, что электрический ток генерирует магнитное поле. Но Максвелл окончательно расставил точки над «i», добавив уточнение, что изменение электрического поля также создает магнитное поле.

Экспериментируя с этими четырьмя уравнениями, Максвелл предсказал существование электромагнитных волн, распространяющихся в пустом пространстве. Более того, он смог вычислить их скорость. Утверждение, что она равна скорости света, повергла его коллег в настоящий шок. Иными словами, Максвелл пришел к выводу, что свет сам должен быть электромагнитной волной!

Эти ученые – Ампер, Фарадей и Максвелл – безусловно, знали, что стоят на пороге масштабной революции в физике. Другие исследователи на протяжении целого столетия изо всех сил пытались разъяснить природу электричества, а эти трое раз за разом открывали совершенно новые горизонты. Я иногда задаюсь вопросом, удавалось ли им вообще спать по ночам?

Уравнения Максвелла, объединенные в общую теорию в 1861 году, стали истинным венцом физики XIX века и уж, безусловно, всей физики в период между Ньютоном и Эйнштейном. И, как все великие открытия, указали путь для дальнейших усилий в деле унификации фундаментальных научных теорий.

Со времен Максвелла физики потратили немалые усилия в попытке разработать единую теорию четырех фундаментальных сил природы: электромагнитных сил, сильного и слабого ядерного взаимодействия и гравитации. Альберт Эйнштейн последние тридцать лет своей жизни пытался объединить электромагнетизм и гравитацию в теорию, которая впоследствии получила название единой теории поля, но все же не успел этого сделать.

Поиски продолжаются и доныне. В 1979 году физики Абдус Салам, Шелдон Глэшоу и Стивен Вайнберг получили Нобелевскую премию за объединение электромагнетизма и слабого ядерного взаимодействия в то, что теперь известно как единое электрослабое взаимодействие. Многие физики по-прежнему пытаются объединить электрослабое и сильное ядерное взаимодействие в то, что назвали теорией великого объединения. Достижение такой степени унификации станет великим научным прорывом, на одном уровне с теорией Максвелла. А если каким-то образом, где-то когда-то кому-то из физиков посчастливится включить в теорию великого объединения гравитацию и создать то, что уже сегодня многие называют теорией всего, то это, безусловно, станет святым Граалем физики. Унификация – великая и мощная мечта.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Уолтер Левин читать все книги автора по порядку

Уолтер Левин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Глазами физика. От края радуги к границе времени отзывы


Отзывы читателей о книге Глазами физика. От края радуги к границе времени, автор: Уолтер Левин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x