Фрэнк Вильчек - Красота физики. Постигая устройство природы
- Название:Красота физики. Постигая устройство природы
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2016
- Город:Москва
- ISBN:978-5-9614-4154-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Фрэнк Вильчек - Красота физики. Постигая устройство природы краткое содержание
Красота физики. Постигая устройство природы - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Примеры: если процесс повторяется каждые 2 секунды, его частота равна 0,5 герца. Если процесс повторяется дважды в секунду – то его частота равна 2 герцам. Молодые здоровые люди способны слышать колебания воздуха, или звуковые волны, если частоты этих колебаний лежат в интервале примерно от 20 до 20000 герц. Человеческий глаз чувствителен к электромагнитным волнамс частотами от 4 × 1014 до 8 × 1014 герц – это довольно высокая скорость колебаний!
В нескольких разделах математики и при формулировке некоторых физических законов находят удобным использовать правую руку (или, гораздо реже, левую).
В большинстве случаев эти «правила правой руки» являются просто результатом соглашений. Соответствующее правило левой руки также можно было бы использовать, и это просто привело бы к переименованию вещей. Возьмите, например, способ, с помощью которого мы присваиваем определенное направление в пространстве вращению вокруг оси. Если объект вращается вокруг оси, мы можем присвоить оси направление, используя правило правой руки, как описано далее. Вообразите наш вращающийся объект как фигуристку на льду. Ось, вокруг которой она вращается, является прямой линией от ее головы до больших пальцев ног. Эта линия имеет некоторую ориентацию в пространстве и, таким образом, почти определяет направление, но, чтобы завершить его, нам нужен еще один шаг: мы должны выбрать между направлением «вверх» и «вниз». Обычное правило правой руки, призванное разрешить эту неоднозначность, говорит, что, если при вращении ее правая рука движется вперед, по направлению к животу, мы выбираем направление «вверх» – т. е. направление от ног к голове, в то время как, если вращение сопровождается движением ее правой руки назад, к спине, мы выбираем направление «вниз». Ясно, что, если бы мы поменяли правое с левым и, одновременно, в правиле, поменяли верх и низ, результирующее «правило левой руки» было бы полностью равнозначным.
Вот еще два примера использования этого правила:
• Движение стрелок часов выражается в их вращении относительно оси, перпендикулярной циферблату. Если вы смотрите на циферблат часов сверху вниз, то применение правила правой руки ко вращению стрелок «по часовой стрелке» дает направление вниз.
• Чтобы закрутить стандартный винт на свое место мы должны заставить его вращаться вокруг своей оси. Если мы смотрим сверху на винт, то мы должны вращать его по часовой стрелке, чтобы заставить его закручиваться вниз. Это срабатывает, поскольку стандартный, хороший винт нарезан так, чтобы соответствовать предыдущему правилу правой руки, и поэтому мы называем его винтом с правой резьбой. Другой вид, назовем их плохими винтами, имеют левую резьбу.
Во всех этих случаях мы могли бы прекрасно заменить правое на левое, чтобы описать точно те же самые ситуации. Нам нужно только поменять в этих определениях местами слова «по часовой стрелке» и «против часовой стрелки» и «хороший» и «плохой».
Точно так же в учебниках физики вы найдете много правил правой руки, описывающих, как определить направление магнитных полейи сил, создаваемых магнитными полями. Но если бы вы изменили правое на левое и одновременно изменили определение направления магнитного поля с точностью до наоборот, то в законах физики ничего бы не изменилось.
Физики полагали до 1956 г., что все проявления правого и левого в физике являются предметом простых соглашений – т. е. соглашениями о том, как определять понятия, принятыми просто для удобства. Соглашения могут быть очень полезными. Очень важно, например, быть в состоянии объяснить производителям винтов, каким образом нарезать резьбу. Но такие договоренности не принадлежат к фундаментальным принципам. Можно было принять другие соглашения!
Другой способ сформулировать это предположение, который красиво находит ему место в главном русле глубоких размышлений об основных принципах, – это предположение о симметрии. Мы говорим, что система уравнений имеет симметрию четности или они являются инвариантными относительно преобразований четности , если в них можно поменять местами левое и правое, сделав соответствующие изменения в определениях, и при этом содержание уравнений не изменится.
(Сделаем техническое дополнение, являющееся одновременно забавным упражнением. «Поменять левое и правое» требует некоторого более подробного объяснения, потому что левое и правое – это свойства объектов [например, рук], расположенных в пространстве, и мы не можем просто так переделать все левые руки в правые руки, все винты с левой резьбой в винты с правой резьбой и т. д., не сделав изменений в самом пространстве так, чтобы преобразованные объекты продолжали подходить друг другу! Проще всего сделать это если выбрать одну точку O – начало координат – и преобразовать любую точку в ее антипод относительно O . Таким образом, вы перемещаете любую точку P в точку диаметрально противоположную относительно точки O .)
Когда мы выполняем наше преобразование четности, отражая точки в их антиподы, естественно, что векторы изменят свое направление. Например, хорошим упражнением будет мысленно увидеть, что вектор, идущий из точки A в точку B, смотрит в противоположном направлении относительно вектора, нарисованного между их антиподами, из точки −A в точку −B.
Вот забавное упражнение с той же идеей: расположите большой палец и два следующих пальца правой руки, чтобы они указывали в трех взаимно перпендикулярных направлениях, сделайте затем то же самое с вашей левой рукой и расположите руки так, чтобы соответствующие пальцы двух рук указывали в противоположные стороны [122] Вам потребуется определенная ловкость рук и гибкость мысли. – Прим. ред.
. Посредством этого упражнения вы воплощаете преобразование четности: ваши пальцы указывают направления, и инверсия всех трех направлений преобразует левую руку в правую и обратно!
В 1956 г. Чжэндао Ли (род. 1926) и Чжэньнин (Фрэнк) Янг (род. 1922) после анализа некоторых озадачивающих экспериментов предположили, что, хотя большинство проявлений «рук» в физике, включая правила правой руки, которые запутывали поколения студентов, изучающих магнетизм, является вполне условным, слабое взаимодействиеотличается в этом отношении и действительно делает различие между левым и правым. Другими словами, они предположили, что симметрия четности соблюдается не строго. Или же, если сказать коротко и просто, они предположили нарушение четности. Их предположение вскоре подтвердилось экспериментально, и этот прорыв привел к гораздо лучшему пониманию слабого взаимодействия.
Читать дальшеИнтервал:
Закладка: