Брайан Грин - Скрытая реальность. Параллельные миры и глубинные законы космоса
- Название:Скрытая реальность. Параллельные миры и глубинные законы космоса
- Автор:
- Жанр:
- Издательство:УРСС: Книжный дом «ЛИБРОКОМ»
- Год:2013
- Город:Москва
- ISBN:978-5-453-00035-7, 978-5-397-03333-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Брайан Грин - Скрытая реальность. Параллельные миры и глубинные законы космоса краткое содержание
Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные. С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования.
Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.
Скрытая реальность. Параллельные миры и глубинные законы космоса - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Многие физики полагают — правильнее было бы сказать, надеются, — что некое подобное полное сокращение, обусловленное ещё не открытой симметрией физических законов, исправит вычисление энергии квантовых флуктуаций. Было высказано предположение, что когда наше понимание физики выйдет на новый уровень, будет выявлен некоторый огромный, пока неизвестный вклад, который скомпенсирует огромную энергию квантовых флуктуаций. Можно сказать, что это почти единственная стратегия, придуманная физиками, чтобы укротить неконтролируемые результаты грубых вычислений. Именно поэтому многие теоретики пришли к выводу, что космологическая постоянная обязана быть равной нулю.
В суперсимметричных моделях возникает конкретный пример того, как можно осуществить этот сценарий. Вспомним из главы 4 (табл. 4.1), что суперсимметрия приводит к парам частиц и, следовательно, парам полей: электрон составляет пару частице, названной суперсимметричным электроном, или сэлектроном, для краткости; кварки и скварки; нейтрино и снейтрино и так далее. На данный момент все такие «счастицы» являются гипотетичными, но эксперименты на Большом адронном коллайдере могут изменить ситуацию в течение ближайших нескольких лет. Так или иначе, при математическом анализе квантовых флуктуаций, связанных с каждой парой полей, всплывает один интригующий факт. Для каждой флуктуации первого поля имеется соответствующая флуктуация его партнёра с такой же формой, но противоположным знаком, точно так же как в домашнем задании Арчи. Так же как в том примере, при сложении все такие вклады пара за парой сокращаются, и окончательный ответ оказывается равным нулю. [40]
Подвох, и достаточно серьёзный, в том, что полное сокращение происходит тогда, когда оба партнёра имеют не только одинаковые электрические и ядерные заряды (что так и есть), но и одинаковые массы. Но экспериментальные данные исключают такую возможность. Даже если в природе и есть суперсимметрия, из наблюдений следует, что она не может быть реализована в самой полной форме. Пока не открытые частицы (сэлектроны, скварки, снейтрино и тому подобное) должны быть значительно тяжелее своих известных партнёров — только так можно объяснить, почему они до сих пор не были обнаружены в экспериментах на ускорителях. При разных массах частиц симметрия нарушается, баланс разбалансирован, сокращения неполные; итоговое значение опять огромно.
В течение многих лет было выдвинуто множество подобных принципов и механизмов сокращения, но ни один из них не достиг цели доказать теоретически равенство нулю космологической постоянной. Но даже в этой ситуации большинство исследователей воспринимали данный факт просто как отражение неполноты нашего понимания физики, а не как ключ к тому, что наша вера в равенство нулю космологической постоянной была ошибочна.
Одним из физиков, отвергающим ортодоксальный взгляд на проблему, был нобелевский лауреат Стивен Вайнберг. [41]В статье, опубликованной в 1987 году, более чем за десять лет до революционных данных по сверхновым, Вайнберг предложил альтернативный теоретический подход, приведший к радикально иному результату: малой, но не равной нулю космологической постоянной. При вычислениях Вайнберг исходил из идеи, относящейся к разряду тех, что делят физическое сообщество на два лагеря, — идеи, одними почитаемой, а другими отторгаемой, идеи, которую одни называют глубокой, а другие считают глупостью. Её официальное, хоть и обманчивое название — антропный принцип .
Космологическая антропность
Гелиоцентрическая модель солнечной системы Николая Коперника как ничто лучше доказывает, что мы, люди, отнюдь не центр Вселенной. Современные открытия упрочили этот урок, да ещё как! Теперь мы понимаем, что открытие Коперника всего лишь одно из череды доказательств, опровергающих столь долго лелеянные нами представления об особом статусе человечества: мы живём не в центре Солнечной системы, не в центре Галактики, не в центре Вселенной, мы даже не сделаны из тёмной материи, составляющей бо́льшую часть массы во Вселенной. Такое космическое понижение в статусе, от примы до статиста, является примером того, что учёные называют теперь принципом Коперника : в полной системе бытия всё указывает на то, что людям не предназначена сколь-нибудь особая роль.
Почти пятьсот лет спустя после работы Коперника на юбилейной конференции в Кракове один из докладов — представленный австралийским физиком Брэндоном Картером — вдруг заманчиво предложил неожиданный пересмотр принципа Коперника. Картер предположил, что излишняя приверженность коперниковским взглядам может, при определённых условиях, лишить исследователей возможности достичь прогресса. Да, соглашался Картер, человечество находится отнюдь не во главе устройства бытия. Но всё же, продолжал он, поддерживая похожие высказывания таких учёных, как Альфред Рассел Уоллес, Абрагам Зелманов и Роберт Дикке, есть сцена, на которой мы действительно играем совершенно исключительную роль — наши собственные наблюдения. Сколь бы далеко не отодвинул нас Коперник и его заветы, мы первые в списке, когда речь идёт о сборе и анализе данных, формирующих основу наших представлений о природе. И в силу такого неизбежного положения мы обязаны принимать во внимание то, что в статистике называется систематической ошибкой отбора .
Это простая идея, которая широко применяется. Если вы изучаете популяцию форели, но собираете данные лишь в пустыне Сахара, то вся полученная информация будет искажена неправильным фокусом на недружественной для форели среде обитания. Если вы изучаете интерес общества к опере, но проводите опрос только среди подписчиков журнала «Не могу жить без оперы», то результаты будут неточны, потому что опрашиваемые не являются типичными представителями населения в целом. Если вы проводите опрос в группе беженцев, перенёсших невероятные трудности во время переселения, то можете прийти к выводу, что эта этническая группа одна из самых жизнестойких на планете. Однако, когда вы узнаете тот удручающий факт, что те, с кем вы говорили, составляют лишь 1 процент от всех, кто был вынужден бежать из своей страны, то поймёте, что ваш вывод далёк от истины, потому что только феноменально сильные люди пережили такую миграцию.
Рассмотрение таких ошибок крайне важно для получения осмысленных результатов и во избежание напрасных усилий для объяснения выводов, сделанных на основе нерепрезентативных данных. Почему форель вымерла? В чём причина лихорадочного интереса к опере в обществе? Почему эта этническая группа настолько вынослива? Необъективные наблюдения могут заставить вас пуститься в бессмысленные поиски объяснений несуществующих вещей.
Читать дальшеИнтервал:
Закладка: