Брайан Грин - Скрытая реальность. Параллельные миры и глубинные законы космоса
- Название:Скрытая реальность. Параллельные миры и глубинные законы космоса
- Автор:
- Жанр:
- Издательство:УРСС: Книжный дом «ЛИБРОКОМ»
- Год:2013
- Город:Москва
- ISBN:978-5-453-00035-7, 978-5-397-03333-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Брайан Грин - Скрытая реальность. Параллельные миры и глубинные законы космоса краткое содержание
Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные. С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования.
Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.
Скрытая реальность. Параллельные миры и глубинные законы космоса - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
То, что уверенность в квантовой механике можно поколебать на основе полученных результатов, является важным моментом. Для любой предложенной научной теории, которая была подходящим образом развита и понята, мы должны быть в состоянии сказать, хотя бы в принципе, что если при осуществлении такого и такого эксперимента мы не получаем такого и такого результата, наша вера в эту теорию должна ослабнуть. И чем сильнее наблюдения отклоняются от предсказаний, тем меньше должно быть доверия такой теории.
Одно из затруднений с многомировым подходом и причина, по которой он остаётся спорным, состоят в том, что он способен лишить нас этих способов оценки уровня доверия к квантовой механике. И вот почему. При подбрасывании монетки я знаю, что с вероятностью 50 процентов выпадет решка и с вероятностью 50 процентов выпадет орёл. Но это заключение основывается на привычном допущении, что подбрасывание монетки даёт единственный результат. Если в одном мире выпадает орёл, а в другом решка, и более того, если есть копия меня в каждом мире, смотрящая на тот или иной результат, то какой тогда смысл у обычной вероятности? В одном мире будет некто, кто выглядит точно как я, обладает всей моей памятью и искренне утверждает, что он — это я, который видит, что выпала решка; а также будет другой, также уверенный что он — это я, который видит, что выпал орёл. Так как выпадают оба результата — есть Брайан Грин, видящий решку, и Брайан Грин, видящий орла, — то привычной вероятности того, что Брайан Грин с равным успехом увидит орла или решку, теперь, по-видимому, не останется.
То же самое можно сказать и про электрон, волна вероятности которого сосредоточена вблизи Земляничных полей и мемориала Гранта (рис. 8.16 б ). Традиционные квантовые рассуждения говорят, что у вас, экспериментатора, есть 50-процентая вероятность обнаружить электрон в одном из двух мест. Но в рамках многомирового подхода имеют место оба результата. Есть вы, который обнаружит электрон в Земляничных полях, и другой вы, который обнаружит его в мемориале Гранта. Поэтому как понимать традиционные вероятностные предсказания, которые в этом случае говорят, что с равной вероятностью вы обнаружите электрон в одном месте или в другом?
Естественная реакция многих людей, когда они в первый раз сталкиваются с этим вопросом, состоит в том, что они думают, что среди различных ваших копий в многомировом подходе есть какая-то одна, более реальная, чем все остальные. Даже если каждый из вас в любом из миров выглядит одинаково и имеет одинаковые воспоминания, люди будут думать, что только один из вас это действительно вы. И, продолжая эту линию рассуждения, это именно тот вы, который наблюдает один и только один результат, соответствующий вероятностным предсказаниям. Мне нравится подобный ответ. Много лет назад, когда я впервые узнал об этих идеях, я тоже так отвечал. Но эти рассуждения не имеют ничего общего с многомировым подходом. Ему свойственен минималистский стиль. Распространение волн вероятности непосредственно управляется уравнением Шрёдингера. И ничем более. Чтобы представить, что одна из ваших копий это «настоящий» вы, нужно проговорить что-нибудь в духе Копенгагенской школы. Схлопывание волны в копенгагенском подходе — это грубый способ сделать один и только один результат реальным. Если в многомировом подходе вы представите, что лишь одна ваша копия это действительно вы, то получится, что вы делаете то же самое, только менее заметно. Такие действия сведут на нет саму причину появления многомирового подхода. Он возник из попытки Эверетта исправить недочёты Копенгагенской школы, и план состоял в том, чтобы не привлекать ничего, кроме проверенного на опыте уравнения Шрёдингера.
Осознание этого выставляет многомировой подход совсем в другом свете. Наша уверенность в квантовой механике основана на экспериментальном подтверждении её вероятностных предсказаний. Однако в многомировом подходе трудно видеть, какую вообще роль играет вероятность. Тогда как можно говорить о третьей стороне вопроса, которая должна заложить основу нашей уверенности в многомировом подходе? Вот это действительно незадача.
Если подумать, то совсем не удивительно, что мы упёрлись в эту стену. В многомировом подходе нет ничего вероятностного. Распространение волны, её исходный и конечный профиль совершенно и полностью детерминировано описываются уравнением Шрёдингера. Никакой игры в кости; никакой крутящейся рулетки. В противоположность этому, в копенгагенском подходе вероятность возникает посредством туманно определённого схлопывания волны, вызванного измерением (напомним, чем больше высота волны в данной точке, тем больше вероятность того, что в результате схлопывания частица окажется именно там). Именно это является одним из ключевых моментов копенгагенской интерпретации, где начинается «игра в кости». Но так как многомировой подход отказывается от схлопывания, он отказывается от традиционной точки вхождения для вероятности.
Итак, есть ли в многомировом подходе место для вероятности?
Вероятность и множественность миров
Определённо можно сказать, что Эверетт считал ответ на этот вопрос положительным. Основная часть чернового варианта его диссертации 1956 года, а также урезанная версия 1957 года была посвящена объяснению того, как инкорпорировать вероятность в многомировой подход. Но дебаты не прекращаются и спустя полвека. Среди физиков и философов, потративших всю жизнь в поисках ответа на этот вопрос, имеется широкий диапазон мнений насчёт того, где и как встречаются множественность миров и вероятность. Некоторые из них утверждают, что проблема нерешаема, поэтому от многомирового подхода следует отказаться. Другие считают, что вероятность, или по крайней мере нечто, что можно назвать вероятностью, действительно присутствует в этом подходе.
Исходный анализ Эверетта является хорошим примером возникающих трудностей. В повседневном опыте мы пользуемся вероятностью, потому что наши знания, как правило, неполны. Если, подбросив монетку, мы имеем достаточно сведений (точный размер монетки, её вес, то, как она была подброшена), то результат можно предсказать. Но поскольку обычно мы лишены такой информации, приходится обращаться к вероятности. Аналогичные рассуждения справедливы для прогнозирования погоды, лотереи и многих других привычных ситуаций, в которых вероятность играет роль: мы прибегаем к вероятностной оценке того или иного исхода только потому, что наши знания ограничены. Эверетт считал, что вероятность находит дорогу в многомировую интерпретацию, потому что присутствует аналогичная неизвестность, но она имеет совершенно иную природу. У населения миров есть доступ только к своему единственному миру; они никак не контактируют с другими мирами. Эверетт считал, что вероятность возникает благодаря этой ограниченности.
Читать дальшеИнтервал:
Закладка: