Леонид Пономарев - По ту сторону кванта
- Название:По ту сторону кванта
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1971
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Леонид Пономарев - По ту сторону кванта краткое содержание
Эта книга не для знатоков, хотя и они найдут здесь несколько неожиданных фактов. Она для тех, кто заканчивает школу, и для тех, кто пытается посмотреть на мир немного шире, чем позволяет им их специальность — необходимо узкая, чтобы быть продуктивной.
В предлагаемой книге история атома рассказана вполне строго. Но строгость в ней не самоцель: как правило, нам интересны не только сами факты, но и их толкование и обстоятельства, при которых они открыты. Поэтому главное в книге — эволюция идей и понятий атомной физики, образующих единую систему — простую и гармоничную. Именно эта внутренняя красота была побудительной причиной появления книги. Я буду считать свою работу не напрасной, если прочитавший ее почувствует силу логических построений квантовой механики и красоту их неожиданно простых следствий.
По ту сторону кванта - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Точно так же движение отдельных электронов в атоме вовсе не похоже на те колебания, которым мы уподобили его раньше. Но в целом ненаблюдаемые пути электронов принадлежат единому наблюдаемому ансамблю — волне вероятности. Форму этой волны диктуют законы квантовой механики.
Аналогии такого рода можно продолжать и дальше, но сейчас важнее уяснить другое. Как теперь надо понимать слова «электрон — это волна»? Ведь если это не материальная волна, а волна вероятности, то ее даже нельзя обнаружить в опытах с отдельным электроном. Иногда волновой характер квантовомеханических явлений трактуют как результат некоего мистического взаимодействия большого числа частиц между собой. Это объяснение мотивируют как раз тем, что волновые закономерности атомных явлений вообще нельзя обнаружить, если проводить опыты с отдельно взятой атомной частицей. Ошибка таких рассуждений объясняется элементарным непониманием природы вероятностных законов: вычислить волновую функцию ψ(х) и распределение вероятностей ρ(x) можно для отдельной частицы, но измерить распределение ρ(х) можно только при многократном повторении однотипных испытаний с одинаковыми частицами.
И все же вероятность — это характеристика отдельного события . А потому каждому электрону присущи волновые свойства, хотя мы обнаружить их можем только в пучке электронов. (Точно так же при игре в «орел-решку» вероятность 1/2 выпадения «орла» — это свойство каждого события, но измерить эту вероятность можно лишь при большом числе испытаний.)
Без понятия вероятности современную квантовую механику представить очень трудно. Пожалуй, это главное, чем она отличается от механики классической. Конечно, и классическая физика постоянно использует теорию вероятностей. Например, в кинетической теории газов. Однако там еще можно успокаивать себя в надежде обойтись без теории вероятностей, если удастся научиться решать одновременно очень много уравнений движения молекул газа. Квантовая механика не оставляет такой надежды, ее уравнения принципиально позволяют вычислять только вероятности событий. Тем не менее для атомных явлений это описание будет настолько же полным, насколько исчерпывающе описание классического движения с помощью понятия траектории.

Все предыдущие примеры и рассуждения помогают нам понять, что представляет собой электрон вне атома и почему эта частица наделена также свойствами волны. Как же эти свойства — волны и частицы — можно совместить без логических противоречий внутри атома ?
АТОМ
Если вы заметили, мы нигде не пытались определить форму атома непосредственно на опыте. Мы ее вычислили из волнового уравнения Шредингера. Мы в нее поверили, поскольку то же самое уравнение позволяет правильно предсказать самые тонкие особенности наблюдаемых спектров атомов. Сейчас эта форма атомов общепризнана, и в предыдущей главе мы даже нарисовали несколько таких форм.

Однако если понимать приведенные рисунки атома буквально, то приходится представлять себе электрон как некое заряженное облако, форма которого зависит от степени возбуждения атома. По многим причинам такая картина неудовлетворительна.

Прежде всего электрон — все-таки частица, и убедиться в этом очень просто, наблюдая, например, его следы в камере Вильсона. Кроме того, мы теперь достаточно хорошо знаем, что никаких реальных колебаний и материальных волн в атоме нет. Реальны только волны вероятности. Как это новое знание изменит наши прежние представления об атоме?

Поставим мысленный опыт по определению формы атома водорода. Возьмем, как и прежде, «электронную пушку», но теперь будем обстреливать из нее не фольгу, а отдельно взятый атом водорода. Что мы при этом должны увидеть?
Большинство электронов «прошьет» атом водорода, как снаряд рыхлое облако, не свернув с пути. Но, наконец, один из них, столкнувшись с электроном атома, вырвет его оттуда и при этом сам изменит направление своего движения. Теперь позади атома мы увидим не один, а два электрона: один — из «пушки», другой — из атома. Допустим, что мы так точно измерили их пути, что можем восстановить точку их встречи в атоме. Можем ли мы на этом основании утверждать, что электрон в атоме водорода находился именно в этой точке?
Нет, не можем. Мы не в состоянии даже проверить свое допущение, поскольку атома водорода больше не существует — наше измерение его разрушило.
Этой беде, однако, легко помочь: все атомы водорода неразличимы, и, чтобы повторить опыт, можно взять любой из них. Повторный опыт нас разочарует: мы обнаружим электрон в атоме совсем не там, где ожидали найти его на основании первого измерения.
Третье, пятое, десятое измерения только укрепят нашу уверенность в том, что электрон в атоме не имеет определенного положения: каждый раз мы будем его находить в новом месте. Но если мы возьмем очень много атомов, проведем очень много измерений и при этом всякий раз будем отмечать точкой место электрона в атоме, найденное в каждом отдельном опыте, то в конце концов мы с удивлением обнаружим, что точки эти расположены не беспорядочно, а группируются в уже знакомые нам фигуры, которые мы раньше вычислили из уравнения Шредингера.
Из опытов по дифракции электронов мы уже знаем, как объяснить этот факт. В самом деле, тогда мы не знали, в какое место фотопластинки попадет электрон, теперь мы не знаем, в каком месте атома мы его найдем. Как и прежде, сейчас мы можем указать только вероятность обнаружения электрона в каком-то определенном месте атома.
В одной точке атома эта вероятность больше, в другой — меньше, но в целом распределение вероятностей образует закономерный силуэт, который мы и принимаем за форму атома.
Ничего другого нам не остается. Можно, конечно, возразить, что это не отдельный атом, а некий обобщенный образ многих атомов. Но это будет слабый аргумент: ведь все атомы в одном и том же квантовом состоянии неразличимы между собой. Поэтому точечные картинки, полученные в опыте по рассеянию электронов на многих , но одинаковых атомах, определяют одновременно форму и обобщенного атома, и одного отдельно взятого атома.
Читать дальшеИнтервал:
Закладка: