Брайан Грин - Брайан Грин. Ткань космоса: Пространство, время и структура реальности
- Название:Брайан Грин. Ткань космоса: Пространство, время и структура реальности
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2004
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Брайан Грин - Брайан Грин. Ткань космоса: Пространство, время и структура реальности краткое содержание
Брайан Грин. Ткань космоса: Пространство, время и структура реальности - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Это не "защита от дурака". Точно так же, как все пять переводов определенного отрывка в главный текст могут быть одинаково неполными, иногда математические описания, даваемые всеми пятью теориями струн, являются одинаково непонятными. В таких случаях, точно так же, как нам бывает нужно проконсультироваться с самим оригинальным текстом, нам, чтобы продвинуться, может понадобиться полное осмысление неуловимой М-теории. Даже при этих условиях в большом количестве обстоятельств открытие Виттена обеспечивает мощный новый инструментарий для анализа теории струн.
Поэтому, точно так же, как каждый перевод сложного текста служит важной конечной цели, каждая струнная формулировка делает то же. Объединяя взгляды, возникающие с точки зрения каждой, мы оказываемся в состоянии ответить на вопросы и обнаружить свойства, которые находятся полностью за пределами достижимого для каждой отдельной струнной формулировки. Открытие Виттена, таким образом, дало теоретикам в пять раз большую огневую мощь для продвижения линии фронта теории струн. Поэтому, в значительной части, оно пробудило революцию.
Одиннадцать измерений
Итак, с нашей вновь обретенной силой для анализа теории струн, какие достижения появились? Их было много. Я сосредоточусь на тех, которые имеют самое большое влияние на историю пространства и времени.
В качестве первостепенной важности, работа Виттена обнаружила, что приблизительные уравнения теории струн, использовавшиеся в 1970е и 1980е годы для заключения, что вселенная должна иметь девять пространственных измерений, ошиблись в правильном их числе. Анализ показал, что точный ответ заключается в том, что в соответствии с М-теорией вселенная имеет десять пространственных измерений, что означает одиннадцать пространственно-временных измерений. Почти как Калуца нашел, что вселенная с пятью пространственно-временными измерениями обеспечивает схему для унификации электромагнетизма и гравитации, и почти как струнные теоретики нашли, что вселенная с десятью пространственно-временными измерениями обеспечивает схему для унификации квантовой механики и ОТО, Виттен нашел, что вселенная с одиннадцатью пространственно-временными измерениями обеспечивает схему для унификации всех струнных теорий. Подобно пяти деревням, которые выглядят при взгляде с уровня земли полностью разделенными, но, когда мы смотрим с вершины горы, – задействовав дополнительное вертикальное измерение, – они выглядят связанными сетью путей и дорог; дополнительное пространственное измерение, появляющееся из анализа Виттена, было решающим для нахождения им связей между всеми пятью теориями струн.
Хотя открытие Виттена, несомненно, является историческим примером достижения объединения через большее количество измерений, когда он анонсировал результат на ежегодной международной конференции по струнной теории в 1995, он потряс основы всего научного направления. Исследователи, включая меня, долго и тяжело думали о применимости приближенных уравнений, и каждый был уверен, что анализ сказал последнее слово относительно числа измерений. Но Виттен обнаружил нечто потрясающее.
Он показал, что все предыдущие попытки анализа делали математическое упрощение, эквивалентное предположению, что до того времени нераспознанное десятое пространственное измерение будет экстремально мало, намного меньше, чем все остальные. Настолько мало, что, фактически, приближенные уравнения теории струн, которые использовали все исследователи, теряют разрешающую силу для обнаружения даже математических намеков на существование этого измерения. Что и привело каждого к заключению, что теория струн имеет только девять пространственных измерений. Но с новым открытием унифицирующей схемы М-теории Виттен оказался в состоянии выйти за пределы приближенных уравнений, исследовать проблему более точно и продемонстрировать, что одно пространственное измерение всегда не замечалось. Таким образом, Виттен показал, что пять десятимерных схем, которые разрабатывались струнными теоретиками более чем десять лет, на самом деле были пятью приблизительными описаниями единственной лежащей в основе одиннадцатимерной теории.
Вы можете поинтересоваться, не сводит ли на нет это неожиданное осознание предыдущие работы в струнной теории. В общем и целом нет. Вновь найденное десятое пространственное измерение добавляет непредвиденные особенности в теорию, но если теория струн/М-теория верна и десятое пространственное измерение оказывается много меньшим, чем все остальные, – как в течение долгого времени неосознанно предполагалось, – предыдущие работы останутся правомерными. Однако, поскольку известные уравнения все еще не в состоянии точно выразить размеры или формы дополнительных измерений, струнные теоретики потратили много усилий, исследуя в течение последних нескольких лет новые возможности не-столь-уж-малого десятого пространственного измерения. Среди других вещей широкомасштабные результаты этих исследований ставят схематическую иллюстрацию унифицирующей силы М-теории, Рис. 13.1, на твердое математическое основание.
Я подозреваю, что дополнение с десяти до одиннадцати измерений – безотносительно к его огромной важности в математической структуре теории струн/М-теории – существенно не изменит картины теории, сложившейся перед вашим умственным взором. Для всех, включая знатоков, попытка представить семь скрученных измерений является упражнением, которое в значительной степени такое же, как попытаться представить шесть.
Второе и тесно связанное открытие из второй суперструнной революции изменяет базовую интуитивную картину струнной теории. Коллективное прозрение большого числа исследователей – Виттена, Даффа, Халла, Таунсенда и многих других – установило, что струнная теория является не только теорией струн.
Браны
Естественный вопрос, который мог появиться у вас в последней главе, таков: Почему струны? Почему одномерные составляющие столь особые? В примирении квантовой механики и ОТО мы нашли, что решающим является то, что струны не есть точки, что они имеют ненулевой размер. Но это требование может быть удовлетворено и двумерными составляющими в форме, подобной миниатюрным дискам или летающим тарелкам, или трехмерными каплеобразными составляющими в форме, подобной бейсбольному мячу или куску глины. Или, поскольку теория имеет такое изобилие пространственных измерений, мы можем даже представить капли с еще большим количеством размерностей. Почему эти составляющие не играют никакой роли в наших фундаментальных теориях?
В 1980х и ранних 1990х большинство струнных теоретиков имели то, что казалось убедительным ответом. Они утверждали, что имелись попытки сформулировать фундаментальную теорию материи, основанную на каплеобразных составляющих, причем среди других этим занимались такие иконы физики двадцатого столетия, как Вернер Гейзенберг и Поль Дирак. Но их труд, точно так же, как многие последующие исследования, показал, что экстремально трудно разработать теорию, основываясь на мельчайших каплях, которые удовлетворяют наиболее базовым физическим требованиям, – например, обеспечению того, что все квантовомеханические вероятности лежат между 0 и 1 (не могут иметь смысла отрицательные вероятности или вероятности больше единицы), и запрету обмена информацией быстрее света. Для точечных частиц полвека исследований, начатых в 1920е, показали, что эти условия могут быть удовлетворены (пока гравитация игнорировалась). А к 1980м более чем десятилетнее исследование Шварца, Шерка, Грина и других установило, к удивлению большинства исследователей, что условия могут также удовлетворяться для одномерных составляющих, струн (с необходимо включенной гравитацией). Но казалось невозможным перейти к фундаментальным составляющим с двумя или более пространственными измерениями. Причина, коротко говоря, в том, что число симметрий, соблюдаемых уравнениями, достигает сильного максимума для одномерных объектов (струн) и круто падает дальше. Симметрии здесь более абстрактны, чем те, что обсуждались в Главе 8 (они связаны с тем, как уравнения изменяются, если мы во время изучения движения струны или составляющей более высокой размерности будем увеличивать или уменьшать масштаб, неожиданно и произвольно меняя разрешение наших наблюдений). Эти трансформации оказываются критическими для формулирования физически осмысленного набора уравнений, и вне струн кажется, что требуемое богатство симметрий отсутствует. [1]
Читать дальшеИнтервал:
Закладка: