Олег Фейгин - Квантовые миры Стивена Хокинга

Тут можно читать онлайн Олег Фейгин - Квантовые миры Стивена Хокинга - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство ООО «ЛитРес», www.litres.ru, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Квантовые миры Стивена Хокинга
  • Автор:
  • Жанр:
  • Издательство:
    ООО «ЛитРес», www.litres.ru
  • Год:
    2019
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Олег Фейгин - Квантовые миры Стивена Хокинга краткое содержание

Квантовые миры Стивена Хокинга - описание и краткое содержание, автор Олег Фейгин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Стивен Хокинг — один из самых известных физиков современности. Ему принадлежало множество работ по теории черных дыр, квантовой космологии и теории относительности. Широкой общественности он был хорошо известен как блестящий популяризатор науки. Кроме того, британский ученый являл собой пример личного мужества, полстолетия сражаясь с ужасным недугом, парализовавшим все тело. Весной 2018 года выдающийся ученый навсегда покинул нашу планету, затерявшись где-то в бесконечных измерениях так любимого им многомирья Мультиверса. Олег Фейгин, физик и автор множества популярных книг, тепло и вдохновенно представляет научное творчество великого теоретика современности.

Квантовые миры Стивена Хокинга - читать онлайн бесплатно ознакомительный отрывок

Квантовые миры Стивена Хокинга - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Олег Фейгин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Обосновывая свою версию «термодинамической стрелы времени», Хокинг снова ставил вопросы: воспринимаем ли мы одностороннее течение времени из прошлого в будущее из-за второго начала термодинамики? связано ли это с фундаментальной связью стрелы времени и энтропии?

С некоторого момента Хокинг присоединился к мнению, что дело обстоит именно так. Последним, с кем он обсуждал проблему «термодинамического направления времени», был известный физик и научный популяризатор, профессор Шон Кэрролл. В ходе долгой беседы была предпринята попытка ответить на вопрос, почему время не движется назад. В итоге физики пришли к выводу, что это связано именно с энтропией.

Энтропия действительно объясняет стрелу времени, доказывал Хокинг на очередном заседании Лондонского королевского общества. В бесчисленных случаях из повседневной реальности, например, кофе с молоком никогда не разделяется на исходные компоненты, а разбитое яйцо никогда не собирается обратно в скорлупу. Во всех этих и аналогичных случаях изначальное состояние низкой энтропии (с большей энергией, пригодной для работы) двигалось к состоянию с более высокой энтропией (и меньшей доступной энергией) с течением времени вперед. В природе много примеров этого процесса, пояснял Хокинг, включая комнату, наполненную молекулами: одна часть полна холодных, движущихся медленно молекулами, а другая — горячих и быстродвижущихся. Надо лишь подождать, и комната заполнится перемешанными частицами средней энергии, что представляет собой большой рост энтропии и необратимую реакцию.

Но нельзя сказать, что она абсолютно необратима. Когда дело касается второго начала термодинамики и увеличения энтропии, это относится исключительно к закрытой системе или системе, в которую не добавляется энергия извне и не вносятся никакие изменения по увеличению или уменьшению энтропии. В 1870 году физик Максвелл предложил способ обращения этой реакции: нужна внешняя сущность, которая будет открывать разделение между двумя сторонами комнаты, позволяя «холодным» молекулам переходить на одну сторону, а «горячим» — на другую (уже упоминавшаяся идея «демон Максвелла», она позволяет понизить энтропию системы).

Разумеется, «обхитрить» природу и нарушить второе начало термодинамики с помощью подобных «демонических сил» все равно никогда не удастся. Дело в том, что демону необходимо затратить огромные объемы энергии, чтобы разделить частицы таким способом. Система под влиянием демона — открытая. Если добавить к ней энтропию и самого демона к общей системе частиц, окажется, что общая энтропия в итоге все-таки возрастает. Но и тут есть важная деталь: даже если бы вы жили в коробке и не заметили существование «демона» — другими словами, если бы вы жили в «карманной вселенной» с возрастающей энтропией, — для вас время все равно бы шло вперед. Термодинамическая стрела времени не определяет направление, в котором воспринимается ход времени.

Итак, откуда берется стрела времени, которая соотносится с нашим восприятием времени? Неизвестно. Однако известно, что это точно не термодинамическая стрела времени. Измерения энтропии Вселенной указывают только на одно возможное уменьшение во всей космической истории: окончание космической инфляции и ее переход к Горячему Большому взрыву (не путать с Большим взрывом — это два разных состояния Вселенной; Горячий Большой взрыв — период развития Вселенной, на последних стадиях которого мы живем).

Большинство ученых утверждает, что Вселенную ждет холодное пустое будущее после того, как все ее звезды сгорят, черные дыры распадутся, а темная энергия разнесет не связанные друг с другом тяготением галактики на огромные, невообразимые расстояния. Это термодинамическое состояние максимальной энтропии известно, как тепловая смерть Вселенной. Любопытно, что состояние, из которого развилась Вселенная — состояние космической инфляции, — обладает теми же свойствами, но с более высокой скоростью расширения во время эпохи инфляции, по сравнению с тем, к которому приведет нынешняя эпоха, где главенствует темная энергия.

Каким образом завершилась инфляция? Как вакуумная энергия Вселенной, свойственная самому пустому пространству, преобразилась в горячий бульон из частиц, античастиц и излучения? И перешла ли Вселенная из состояния с невероятно высокой энтропией во время космической инфляции в состояние с более низкой энтропией во время Горячего Большого взрыва, либо энтропия при инфляции была еще ниже из-за итоговой способности Вселенной к совершению механической работы? На сегодня у ученых есть только теории, которые оставил после себя кембриджский теоретик, и они когда-нибудь приведут к верным ответам на эти вопросы. Экспериментальные или наблюдательные признаки, которые могли бы подсказать, пока получены не были.

Хокинг трактовал стрелу времени с точки зрения термодинамики — и это действительно ценное и очень важное понимание. Но если вы хотите узнать, почему вчера раз за разом остается в неизменном прошлом, завтра наступает на следующий день, а настоящее — то, где вы проживаете прямо сейчас, термодинамика вряд ли может ответить на этот вопрос. И пока что, по сути, нет никого, кто бы смог.

К примеру, в квантовой механике соотношение неопределенностей «энергия — время» накладывает специфические ограничения на саму процедуру измерения времени, тесно связанную с множественным характером темпоральной реальности. Из вероятностного характера квантовой физики можно делать потрясающие модели той же суперсимметричной М-теории, однако представления о времени оказались довольно устойчивыми даже для «транссингулярных бран». А стандартная квантовая теория вообще использует время как самую настоящую классическую переменную, не приписывая ей какие-то новые сущности. Тем не менее, течение времени в микромире имеет свои особенности. Прежде всего, это, конечно же, наличие соотношения неопределенности «время — энергия»: ∆t∆E≥ħ, гласящей, что мы можем уточнить либо изменение энергии, либо время, за которое оно произошло. Во-вторых, весь квантовый мир пронизан колебаниями, определяемыми через частоту опять-таки временными характеристиками. Ну и, в конце концов, само выражение для планковского кванта действия из соображений размерности распадается на «энергетическую» и «темпоральную» части.

И хотя чаще всего парадоксы квантовой физики связаны с распространением обыденных макроскопических понятий пространства и времени на квантовые объекты, какой-то аналог «стрелы времени» должен существовать и в микромире. Впрочем, микрочастицы вовсе не обязаны принадлежать только к знакомому нам частному случаю пространства-времени (математики называют его гладким топологическим многообразием Минковского) в виде обычного евклидова пространства трех измерений из школьных учебников, дополненного координатной осью времени. Вполне возможно, что они «обитают» в своем специфическом микропространстве, в которое переходит многообразие Минковского на «планковских дистанциях», выражаемых дробными миллиметрами с тридцатью нулями. В этой таинственной глубине могут происходить совершенно невероятные вещи, предсказываемые формальными математическими моделями, и далекие, даже астрономические расстояния «здесь» могут соответствовать неразличимой близости «там». Вот, кстати, и еще один вариант разгадки ЭПР-парадокса, причем несравненно более «физичный», чем чудотворное квантовое сознание наблюдателей и «разумные потенциалы» микрочастиц, встречающиеся у отдельных современных исследователей.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Олег Фейгин читать все книги автора по порядку

Олег Фейгин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Квантовые миры Стивена Хокинга отзывы


Отзывы читателей о книге Квантовые миры Стивена Хокинга, автор: Олег Фейгин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x