Олег Фейгин - Квантовые миры Стивена Хокинга
- Название:Квантовые миры Стивена Хокинга
- Автор:
- Жанр:
- Издательство:ООО «ЛитРес», www.litres.ru
- Год:2019
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Олег Фейгин - Квантовые миры Стивена Хокинга краткое содержание
Квантовые миры Стивена Хокинга - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Новая гипотеза прямым образом не вписывается в существующие наброски будущей объединенной теории. Поэтому экспериментальное открытие пятой силы привело бы к существенному пересмотру направлений поисков единой теории и, может быть, дало бы этим поискам новый решительный импульс. Физики-теоретики, складывающие мозаику экспериментальных фактов в единую картину мироздания, с надеждой ждут недостающих фрагментов, которые, быть может, окажутся ключевыми. Но надежды эти сочетаются с естественным недоверием, потому что большие открытия происходят редко. Ближайшее будущее покажет, что привлекло внимание исследователей — случайная тень на монолитном фундаменте физики или след потайного хода вглубь.
В своей замечательной книге «Теория Всего» кембриджский теоретик разделил все наши знания по физике на три уровня. Первый — сведения о различных явлениях, второй — объединяющие их законы и, наконец, третий, высший уровень — симметрия, которая устанавливает связь между самими законами.
Хокинг понимал симметрию как своеобразную «стойкость» материальной системы к внешнему воздействию на ее отдельные параметры. Можно говорить, например, о симметрии по отношению к пространственным сдвигам, о симметрии всех явлений природы при замене частиц на античастицы, о симметричности свойств частиц по отношению к какому-то типу взаимодействий, и так далее.
Так вот, в последние годы Хокинг пришел к мысли, что симметрия — это самое главное, что есть в физике. И с ним трудно не согласиться. Ведь симметрия связана с законами сохранения, на которых держится вся физическая наука. Законы сохранения устанавливают ограничения на возможные движения системы и происходящие в ней процессы. Их знание чрезвычайно важно для понимания ее свойств. Образно говоря, симметрия и законы сохранения выполняют роль железного каркаса, на котором держится здание физической теории.
Свою теорию симметрии молодой французский математик Эварист Галуа записал в ночь перед роковой дуэлью. Раненый, он умер, не приходя в сознание, а обессмертившая его имя теория лежит в фундаменте современной физики элементарных частиц. Формулы Галуа позволяют объединить все элементарные частицы в семейства — мультиплеты, члены которых при преобразовании симметрии переходят друг в друга. Удивительно, но каждый такой мультиплет можно считать одной и той же частицей в различных своих состояниях.
Главное значение теории Галуа состоит в том, что она, подобно таблице химических элементов Менделеева, позволяет предсказывать существование еще не известных мультиплетов с данной симметрией. Трудно переоценить пользу такой теории! Это похоже на то, как если бы, плутая в Королевстве кривых зеркал, мы вдруг нашли волшебные очки, и прихотливо изогнутый деформированный мир приобрел бы для нас четкие формы. Открытие новых мультиплетов элементарных частиц — очень важное событие в физике, порождающее лавину экспериментальных и теоретических исследований. Это поворотные пункты в развитии физической науки, когда она получает в свое распоряжение карту нового района Страны неизвестного. Но чтобы пользоваться этой картой, сначала нужно определить на ней масштабы расстояний и высот местности, т. е. прокалибровать своеобразным образом.
Мы уже знаем, что четыреста с лишним лет назад великий Галилео Галилей открыл замечательную симметрию двух систем координат — неподвижной и равномерно движущейся вдоль прямой линии. Физические процессы протекают в них совершенно одинаково. Находясь внутри закрытой кареты, никакими опытами нельзя установить, стоит она на месте или равномерно движется. Галилей установил ее для небольших скоростей и только для механических процессов. Других возможностей у него не было. В начале прошлого века было доказано, что данная симметрия сохраняется при любых скоростях, вплоть до самых больших, близких к скорости света, и не только для механических, но вообще для любых физических процессов.
А можно ли найти еще более общую, симметрию? — этот вопрос Хокинг неоднократно обсуждал с ведущими теоретиками. Постепенно у него сформировался вывод, что сама теория как бы подсказывает дальнейший путь ее развития. Для этого только нужно открыть еще одну симметрию, настолько общую, чтобы она охватывала все известные нам виды материи.
Обсуждая с коллегами различные идеи объединения, Хокинг всегда делал акцент на том, что квантовые законы, которым подчиняются микропроцессы, разрешают передачу лишь дискретных порций энергии. С другой стороны, физики давно уже открыли у элементарных частиц своеобразное внутреннее «вращательное» движение и назвали его спином.
При этом профессор Хокинг возвращался к квантовой теории тяготения, которая основывалась на гипотезе существования гравитона — кванта поля тяготения. Гравитон подобен фотону — это безмассовая частица, движущаяся со скоростью света и проявляющая свои уникальные свойства на очень малых расстояниях, меньших тысячной диаметра протона. Поле тяготения на таких масштабах приобретает совершенно новые черты и становится супергравитацией. Теория Эйнштейна для нее уже непригодна. Здесь нужна новая теория, объединяющая квантовую механику, идею суперсимметрии и общую теорию относительности. Она до сих пор интенсивно разрабатывается героическими усилиями интернационального коллектива физиков многих стран. Однако главным препятствием для развития этой замечательной теории остается отсутствие надежных экспериментальных данных.
На помощь пришла суперсимметрия, оказалось, что бесконечности, связанные с квантовой гравитацией, компенсируют друг друга. Это был выдающийся успех. Первая область квантовой физики, где злой дух бесконечностей был побежден и изгнан! Появилась реальная надежда создать непротиворечивую теорию элементарных частиц.
Однако более тщательные исследования показали, что часть бесконечностей все же осталась. И вот тут был сделан еще один важный шаг — выдвинута гипотеза о том, что окружающий нас мир не исчерпывается тремя известными нам измерениями — длиной, шириной и высотой, — и в нем есть еще скрытые, не видимые нами пространственные измерения.
Хотя мысль о высших пространственных измерениях — неподтвержденная экспериментом гипотеза, в глазах физиков она выглядит весьма убедительной. Она обещает отрубить головы дракону бесконечностей, как нить Ариадны ведет физиков к последовательной и самосогласованной теории вещества и поля. Трудно даже подумать, что столь плодотворная идея может оказаться всего лишь временной теоретической химерой.
Есть еще одно соображение, которое, казалось бы, убедительно говорит о том, что в нашем мире нет в явном (несвернутом) виде ни четвертого, ни более высоких пространственных измерений. Английский астрофизик Артур Эддингтон доказал, что в этом случае вообще не было бы атомного вещества, так как в мирах с числом измерений, большим трех, электрические заряды взаимодействуют слишком сильно. Электроны там не могут удержаться на орбитах, и атомы «взрываются внутрь» или коллапсируют. Может быть, такие своеобразные миры где-то и существуют вне нашей реальности, но в нашей Вселенной атомы вполне устойчивы. Трудность с лишними пространственными измерениями была главной причиной подозрительного отношения физиков к идее Калуцы. Первую серьезную попытку справиться с ней предпринял шведский теоретик Оскар Клейн. Перечитывая своего любимого Уэллса, в его «Машине времени» он наткнулся на следующий диалог:
Читать дальшеИнтервал:
Закладка: