Олег Фейгин - Квантовые миры Стивена Хокинга

Тут можно читать онлайн Олег Фейгин - Квантовые миры Стивена Хокинга - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство ООО «ЛитРес», www.litres.ru, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Квантовые миры Стивена Хокинга
  • Автор:
  • Жанр:
  • Издательство:
    ООО «ЛитРес», www.litres.ru
  • Год:
    2019
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Олег Фейгин - Квантовые миры Стивена Хокинга краткое содержание

Квантовые миры Стивена Хокинга - описание и краткое содержание, автор Олег Фейгин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Стивен Хокинг — один из самых известных физиков современности. Ему принадлежало множество работ по теории черных дыр, квантовой космологии и теории относительности. Широкой общественности он был хорошо известен как блестящий популяризатор науки. Кроме того, британский ученый являл собой пример личного мужества, полстолетия сражаясь с ужасным недугом, парализовавшим все тело. Весной 2018 года выдающийся ученый навсегда покинул нашу планету, затерявшись где-то в бесконечных измерениях так любимого им многомирья Мультиверса. Олег Фейгин, физик и автор множества популярных книг, тепло и вдохновенно представляет научное творчество великого теоретика современности.

Квантовые миры Стивена Хокинга - читать онлайн бесплатно ознакомительный отрывок

Квантовые миры Стивена Хокинга - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Олег Фейгин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Астрофизики давно поняли, что черная дыра излучает как абсолютно черное тело, и это излучение связано с квантовыми флуктуациями виртуальных частиц вакуума. Эти частицы на мгновение расходятся друг от друга и тут же снова сливаются в пары. В поле тяготения черной дыры эти флуктуации могут резонировать, увеличивая амплитуду расхождения частиц. При этом одна из частиц может оказаться внутри сферы Шварцшильда и будет неудержимо падать к ее центру, а другая — вне сферы Шварцшильда, она улетит в космос, унося с собой часть энергии черной дыры. В результате будет возникать «излучение Хокинга», и черная дыра станет испаряться.

Открытие Хокингом квантового испарения черных дыр произвело настоящую сенсацию среди астрофизиков-теоретиков. Между тем, на практике черные дыры продолжали оставаться такими же ненаблюдаемыми, как и раньше. Объясняется это тем, что черные дыры являются неустойчивыми объектами и при своем образовании попросту исчезают из нашей Вселенной. Другое дело, что в области виртуальной геометрии вакуумные частицы могут резонировать так же, как и на обычной сфере Шварцшильда. Но этот резонанс никак не связан с гравитационным коллапсом звезд. С гораздо большим основанием его можно отнести к обычным квантовым скачкам реальных элементарных частиц из одной точки пространства в другую. А вот выбрасывание остатков вещества коллапсирующей звезды в другие вселенные действительно можно рассматривать как квантовое испарение черной дыры. Но такое испарение не имеет никакого отношения к резонансу вакуумных частиц.

Горизонт событий черной дыры считается последним рубежом: попав за его пределы, ничто не может покинуть черную дыру, даже свет. Но касается ли это информации как таковой? Будет ли она навсегда утеряна в черной дыре, как и все остальное?

Эти вопросы относятся к т. н. информационному парадоксу черных дыр, тесно связанному с излучением коллапсаров, их испарением и другими парадоксами темных звезд. Однако, когда на семинаре по гравитационному коллапсу, черным дырам и гравитационным сингулярностям профессор Хокинг подходил к теме информационного парадокса, он прежде всего обращался к понятию информации.

Когда мы думаем о напечатанных в книге словах, количестве битов и байтов в компьютерном файле или конфигурациях и квантовых свойствах составляющих систему частиц, мы думаем об информации как о полном комплекте всего необходимого для воссоздания чего бы то ни было с нуля.

Однако такое традиционное определение информации не является непосредственным физическим свойством, которое можно измерить или вычислить, как, например, это можно сделать с температурой. К счастью для нас, существует физическое свойство, которое мы можем определить как эквивалентное информации, — энтропия. Вместо того чтобы считать энтропию мерой беспорядка, о ней следует размышлять как о «недостающей» информации, необходимой для определения конкретного микросостояния какой-либо системы.

При поглощении массы черной дырой количество энтропии вещества определено его физическими свойствами. Однако внутри черной дыры значение имеют только такие свойства, как масса, заряд и угловой момент. Для сохранения второго закона термодинамики это представляет серьезную проблему.

Во Вселенной есть определенные правила, которым должна следовать энтропия. Второй закон термодинамики можно назвать самым нерушимым из них: возьмите любую систему, не позволяйте ничему в нее попасть или выйти из нее — и ее энтропия никогда внезапно не уменьшится.

Разбитое яйцо не собирается обратно в скорлупу, теплая вода никогда не разделяется на горячую и холодную части, а пепел никогда не собирается в форму объекта, которым он был до того, как сгорел. Все это было бы примером уменьшающейся энтропии, и, очевидно, ничего такого в природе не происходит само по себе. Энтропия может оставаться одинаковой и увеличиваться при большинстве обстоятельств, но она никогда не может вернуться в более низкое состояние.

Единственный способ искусственно уменьшить энтропию — ввести в систему энергию, тем самым «обманув» второй закон термодинамики, увеличивая внешнюю по отношению к этой системе энтропию на большее значение, чем она уменьшается в этой системе. Уборка в доме — отличный пример. Другими словами, от энтропии невозможно избавиться.

Так что же происходит, когда черная дыра кормится веществом? Давайте представим, что мы бросили книгу в черную дыру. Книга содержит информацию, но, когда вы кидаете ее в черную дыру, то только увеличиваете ее массу. Изначально, когда ученые начали изучать эту проблему, считалось, что энтропия черной дыры равна нулю. Но если бы это было так, попадание чего-либо в черную дыру всегда нарушало бы второй закон термодинамики. Что, конечно, невозможно.

Масса черной дыры — единственный определяющий фактор радиуса горизонта событий для невращающейся, изолированной черной дыры. В течение долгого времени считалось, что черные дыры — это статичные объекты в пространстве-времени Вселенной.

Но как вычислить энтропию черной дыры?

Эту идею можно проследить до Джона Уилера, размышлявшего о том, что происходит с объектом при падении в черную дыру с точки зрения наблюдателя вдалеке от горизонта событий. С большого расстояния нам бы казалось, что падающий в черную дыру человек асимптотически приближается к горизонту событий, все больше и больше краснея из-за гравитационного красного смещения и бесконечно долго двигаясь по направлению к горизонту из-за эффекта релятивистского замедления времени. Таким образом, информация от чего-либо, упавшего в черную дыру, осталась бы «зашифрованной» на ее поверхности.

Это элегантно решает проблему и звучит разумно. Когда что-то падает в черную дыру, ее масса увеличивается. При увеличении массы увеличивается и ее радиус, а значит, и площадь поверхности. Чем больше площадь поверхности, тем больше информации можно зашифровать.

Это означает, что энтропия черной дыры вовсе не нулевая, а как раз наоборот — огромная. Несмотря на то что горизонт событий относительно мал по сравнению с размерами Вселенной, количество пространства, необходимое для записи одного квантового бита, мало, а значит, на поверхности черной дыры можно записать невероятные объемы информации. Энтропия увеличивается, информация сохраняется, а законы термодинамики сохраняются. Можно расходиться, так?

На поверхности черной дыры могут быть закодированы биты информации, пропорциональной площади поверхности горизонта событий.

Не совсем. Дело в том, что, если черные дыры обладают энтропией, у них должна быть и температура. Как и в случае с любым другим объектом с температурой, от них должно исходить излучение.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Олег Фейгин читать все книги автора по порядку

Олег Фейгин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Квантовые миры Стивена Хокинга отзывы


Отзывы читателей о книге Квантовые миры Стивена Хокинга, автор: Олег Фейгин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x