Эрик Асфог - Когда у Земли было две Луны. Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба
- Название:Когда у Земли было две Луны. Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2021
- Город:Москва
- ISBN:9785001395072
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрик Асфог - Когда у Земли было две Луны. Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба краткое содержание
В книге «Когда у Земли было две Луны» известный планетолог Эрик Асфог отправляет нас в захватывающее путешествие в самые далекие времена нашей Галактики, чтобы выяснить, почему Луна такая разная. Интересно написанная, с провокационными аргументами, эта книга – не только головокружительный астрономический тур, но и глубокое исследование происхождения жизни в миллиардах километрах от нашего дома.
Когда у Земли было две Луны. Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Если Земля и Венера собрали всех более мелких акул, тогда неважно, ели эти мелкие еще более мелких или нет, – свидетельств того, как проходил этот процесс, не останется. Нельзя сказать, имело ли место безумное пиршество маленьких акул, в результате которого остались три или четыре акулы побольше, которых потом поглотили Земля и Венера, или Земля и Венера непосредственно сожрали всю мелочь. Это не принципиально, и мы об этом никогда не узнаем.
Но аккреция планет – процесс отнюдь не со стопроцентной эффективностью; одна из ее главных характеристик – это то, что иногда мелкие акулы ускользают. Что, если на каждые девять более мелких акул Протоземля и Протовенера пропускали одну? А что, если эти более мелкие акулы, в свою очередь, пропускали небольшую долю еще более мелких? Так у нас в итоге окажется некоторое количество акул чуть помельче, которых очень трудно поймать, множество более мелких, которых поймать еще труднее, и так далее – плюс Земля и Венера, «победители» соревнований по аккреции.
Рассматривая популяцию небесных тел, оставшихся после окончания планетообразования, вы можете подумать, что эти хитрые, изворотливые, удачливые акулы являются типичными представителями первоначальной популяции – но это будет ошибкой. Это не случайные представители, поскольку они прошли определенный отбор по умению избегать того, чтобы их поймали [262]. Вот еще один пример того, что мы называем систематической ошибкой, связанной с отсевом участников. Возьмем сотню солдат, отправляющихся на войну: ничем не примечательных, неопытных молодых рекрутов из обычных семей. (Они будут представлять эмбрионы из самых разных частей внутренней Солнечной системы, начальные тела планетообразования.) У каждого такого солдата есть собственные уникальные качества, которые вот-вот будут проверены в бою, и собственная степень удачливости. После тяжелой кампании вернулось, скажем, только десять человек, остальные погибли. Те, кто выжил, имеют выдающиеся личные качества и боевые навыки и могут рассказать немало историй о необыкновенном везении. Возможно, один или двое дезертировали, чтобы избежать кровавого пекла. Постепенно земля поглощала все больше солдат (тоже своего рода аккреция), и в результате этого отсева в живых осталась очень разнородная группа покрытых славой ветеранов.
Рождаясь в хаосе и нестабильности, планетные системы в начале своего существования непредсказуемы, как весенняя погода. В течение миллионов лет они развиваются, достигая стабильного состояния, когда планеты и их спутники методом проб и ошибок уже научились избегать друг друга – либо держась подальше от соседей, либо вступая с ними в резонанс, при котором не происходит столкновений. Примерно как люди, не правда ли?
Резонанс галилеевых спутников Юпитера не позволяет им сдвигаться независимо друг от друга, что привело к орбитальной стабильности Ио, Европы и Ганимеда. Подобным же образом Нептун никогда не столкнется с Плутоном, а Тефия никогда не налетит на Калипсо и Телесто, хотя все три обращаются по одной и той же орбите вокруг Сатурна. Другие резонансы менее очевидны. Например, Венера делает почти 13 оборотов на каждые 8 оборотов Земли, выписывая вокруг нее пятиконечный цветочный орнамент. Это указывает на то, что Земля и Венера могли быть каким-то основополагающим образом связаны в момент своего образования.
В конечном итоге Венера и Земля получили одно и то же процентное содержание железа и горных пород, а также выросли до примерно одного размера, так что любая связь и любое различие между ними важны. Венера вращается вокруг своей оси медленнее, чем все остальные планеты (с периодом в 243 земных суток, причем в обратную сторону), и у нее нет спутников, но я бы сказал, что по большому счету ее сходство с Землей перевешивает различия. Согласно гипотезе первоначальной Солнечной системы, Венера и Земля – хитрые акулы, которые не дали себя сожрать суперземлям и нептунам, лавируя в окружающем хаосе. Если это верно, мне кажется, они должны были бы различаться сильнее, примерно как Меркурий и Марс. Вместо этого все выглядит так, будто две самые крупные акулы поделили между собой океан, но выросли немного разными.

Если Земля покоится в центре этой «Розы Венеры», то Венера, подобно спирографу, выписывает такой цветочный орнамент, иногда приближаясь, а иногда отдаляясь, пока обе планеты обращаются вокруг Солнца. Кажущееся движение Венеры относительно Земли имеет такую изящную пятиконечную траекторию, потому что Венера совершает вокруг Солнца почти точно 13 оборотов на каждые 8 оборотов Земли. Причины этого нам неизвестны
Другой парадокс – проблема «теплого, влажного Марса» – может быть списан на хаотичность динамики планет. Спустя полмиллиарда лет после их формирования, когда светимость Солнца составляла только три четверти от сегодняшней, атмосферные и климатические условия на Марсе позволили появиться извилистым каналам, катастрофическим наводнениям и цепочкам кратерных озер. Однако в пересчете на квадратный метр Марс получает всего 43 % солнечной энергии Земли, и там должно было быть еще холоднее, когда Солнце выдавало всего три четверти нынешнего тепла. Согласно результатам климатического моделирования [263], теплый и влажный Марс должен был иметь атмосферу с давлением углекислого газа в два бара – только так у него был шанс на температуру у поверхности выше точки замерзания воды. Выполнив свою функцию парникового газа, гигатонны CO 2должны были бы исчезнуть безо всякого следа. Пропавший углерод был бы сразу заметен в стратиграфической летописи так же, как на Земле слои так называемой полосчатой железистой формации возрастом от 2 до 2,5 млрд лет свидетельствуют о внезапном росте содержания кислорода – что вполне достойно небольшого отступления.
Фотосинтез появился на Земле более 3 млрд лет назад, начав производить кислород – а конкретнее О 2, свободный молекулярный кислород, присутствующий в атмосфере. Большая часть жизни на планете не была приспособлена к этому высокореактивному ядовитому газу, но все было в порядке, так как О 2удалялся так же быстро, как производился. Он окислял горные породы, делая их красными (вспомните ржавчину, FeO). Но примерно 2,4–2,7 млрд лет назад маты фотосинтезирующих цианобактерий словно с цепи сорвались. Они заполнили собой воду и сушу, вызвав кислородную катастрофу – событие, завершившее архей, начавшее протерозой и в конце концов приведшее к возникновению сложной жизни. На Марсе нам бы хотелось отыскать следы подобных крупных событий древности, и исчезновение практически всей атмосферы было бы одним из них.
Читать дальшеИнтервал:
Закладка: