Эрик Асфог - Когда у Земли было две Луны. Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба
- Название:Когда у Земли было две Луны. Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2021
- Город:Москва
- ISBN:9785001395072
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрик Асфог - Когда у Земли было две Луны. Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба краткое содержание
В книге «Когда у Земли было две Луны» известный планетолог Эрик Асфог отправляет нас в захватывающее путешествие в самые далекие времена нашей Галактики, чтобы выяснить, почему Луна такая разная. Интересно написанная, с провокационными аргументами, эта книга – не только головокружительный астрономический тур, но и глубокое исследование происхождения жизни в миллиардах километрах от нашего дома.
Когда у Земли было две Луны. Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Согласно расчетам, астероиды диаметром менее 100 км, напротив, с огромной вероятностью подвергаются катастрофическому разрушению в результате столкновения. На раннем этапе их было так много, что столкновения с ними происходили часто, а разрушить такие астероиды поменьше куда проще. Таким образом, тут существует переломный момент, определяемый тем, как далеко тело продвинулось в процессе планетообразования: в зависимости от своего размера оно склонно либо становиться больше, добиваясь дальнейшего успеха, либо становиться меньше, подвергаясь эрозии и разлетаясь на части. В наше время Главный пояс астероидов медленно сходит на нет, столкновение за столкновением, но 4,56 млрд лет назад в этом же районе мелкие тела непрерывно росли, поглощая друг друга.
Что касается астероидов диаметром менее 100 км, они считаются результатом ударного измельчения – процесса образования бесчисленных десятиметровых тел, миллиардов стометровых и миллионов километровых в ходе разрушения горных пород. Эту ситуацию можно смоделировать экспериментально, если поместить в дробилку крупные камни и включить ее. Сначала образуется масса пыли – это разрушаются самые мягкие из камней. В конечном итоге пылью станет все, но на промежуточном этапе основная часть материала окажется сосредоточенной в нескольких крупных фрагментах. Сегодня планеты отошли в сторону – «дробилка» работает с куда меньшей мощностью, – и масса Главного пояса сосредоточена в основном в нескольких крупных астероидах, а более мелкие тела медленно разрушают друг друга.
Половина массы сегодняшних астероидов приходится на четыре тела, которые иногда еще называют карликовыми планетами. Это Веста, Церера, Паллада и Гигея [309], каждая диаметром от 400 до 1000 км. Это не особенно удивительно: скажем, половина суммарной массы землеподобных планет приходится на одно тело – Землю. Как мы уже видели, аккреция создает распределение масс с сильным сдвигом в верхнюю часть диапазона. Веста, Церера и прочие тяжеловесы, как я полагаю, являются первоначальными продуктами аккреции или их непосредственными остатками. Дальше идут десятки астероидов диаметром в несколько сотен километров (некоторые из них могут быть первичными), сотни тел вполовину меньше и так далее. Распределение размеров представляет собой геометрическую прогрессию, где на каждый астероид приходится несколько более мелких, примерно в одну десятую от его массы [310]. Это похоже на то, что происходит с глиняной мишенью для стрельбы: при попадании пули она распадается на несколько узнаваемых кусков, которые можно собрать воедино (в нашем случае это соответствует семейству астероидов), десяток осколков, сотни кусочков, тысячи крошек и, наконец, пыль.
Этой иерархии дробления может соответствовать иерархия поверхностных и околоповерхностных зон, меняющихся в результате взаимодействия со всеми этими притягивающимися друг к другу обломками. Выше всего находится оптическая поверхность – наружный микрон толщины, отражающий и преломляющий солнечный свет в объектив камеры. Именно его показывает нам фотография. Но о том, что находится под этим микронным слоем, камера не знает ничего. Далее следует термическая поверхность – зона, в которой ощущается присутствие солнечного тепла. Она простирается вглубь на сантиметр, если брать масштаб дней, и на несколько метров – в масштабе лет. Под годовым термическим слоем мы устраиваем погреба для картошки и винные подвалы, а под дневным термическим слоем вы прячете на пляже пальцы ног, чтобы отдохнуть от раскаленного песка.
Под оптической и термической поверхностями находится подповерхностный слой – зона, которая сообщается с внешней атмосферой или, если таковая отсутствует, с космической радиацией. На планетах с атмосферой в подповерхностном слое происходит адсорбция почвой воды (пара и жидкости) и обмен водой с воздухом. На Земле в нем сосредоточена бóльшая часть биомассы. На безвоздушном теле, таком как комета, подповерхностный слой охватывает те области, где льды из летучих веществ [311]испускают газ в виде реактивных струй и хвостов. На Марсе этот слой включает метры верхнего реголита, которые вбирают в себя попеременно то H 2O, то СО 2,а потом испускают их со сменой сезонов. На спутнике Нептуна Тритоне в подповерхностном слое находятся источники азотных гейзеров, которые зафиксировал во время своего пролета космический аппарат «Вояджер».
Изучая первичные продукты начального этапа планетообразования (например, Психею, Весту или Цереру), а также разрушенные фрагменты (более мелкие астероиды и кометы), мы надеемся воссоздать некоторые из первых «глиняных мишеней». Но теперь представьте, что вам дали случайную коробку, где находится только доля одного процента обломков. Какую историю вы сможете угадать? Какая мишень у вас получится? Вероятно, поначалу астероидов всех размеров было в тысячи раз больше, так что почти все нынешние детали относятся к давно исчезнувшим головоломкам.
Для астероидов диаметром менее 100 км разрушение – это творение. Каждый из них возник в процессе распада более крупного родительского тела, так что их образование происходит иерархически: распад тяжеловеса приводит к каскаду фрагментов. Для тел размером более 1000 км, напротив, творение – это аккреция. Столкновения ведут к слияниям, эмбрионы превращаются в олигархи, а затем – в планеты. Этот процесс тоже является иерархическим, но развивается снизу-вверх, как дерево. Как это организовано на деле, нам непонятно, поэтому так важны грядущие экспедиции NASA к астероидам среднего размера, таким как Психея и Патрокл [312], которые находятся примерно на грани между этими двумя группами.
Из-за того, что аккреция происходила иерархично, мы не можем определить точное время образования Земли. Можно сказать, сколько время прошло с момента t 0до отделения земного ядра от мантии [313], но это нижний предел того, как долго шло формирование Земли, поскольку железо могло отделиться и внутри более мелких эмбрионов, из которых она возникла. А образование Луны, вероятно, произошло примерно через 50 млн лет после этого , что согласуется с тем, что это был один из последних актов аккреции олигарха.
С точки зрения геологии после столкновения с Тейей Земля стала совершенно новой, «с иголочки», планетой, результатом вторичной переработки всех своих старых составляющих, хотя в науке по-прежнему кипят споры по поводу того, насколько хорошо все было перемешано и не осталось ли «где-то внизу», в мантии, больших кусков Тейи, сохранивших свой состав. Это зависит от энергетики столкновения и конкретного сценария образования Луны: гигантское столкновение с большой энергией расплавило бы все вокруг, нажав на кнопку геологической перезагрузки, а плавное слияние могло сохранить остатки Тейи как отдельные слои в глубине Земли.
Читать дальшеИнтервал:
Закладка: