Элен Черски - Физика и жизнь. Законы природы: от кухни до космоса
- Название:Физика и жизнь. Законы природы: от кухни до космоса
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2021
- Город:Москва
- ISBN:9785001469865
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Элен Черски - Физика и жизнь. Законы природы: от кухни до космоса краткое содержание
Физика и жизнь. Законы природы: от кухни до космоса - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Мы спускаемся по крутой винтовой лестнице внутрь моста и проходим через несколько огромных каменных гротов, скрывающихся в основании башни. В первом расположены оригинальные гидравлические насосы, а в следующем, более крупном, мы наталкиваемся на деревянного монстра: бочку высотой с двухэтажный дом, которая служит временным накопителем энергии – чем-то вроде неэлектрической батареи. Но больше всего меня интересует третий, самый большой грот. Это камера, в которой размещается противовес.
Путь между двумя башнями фактически разделяется на две половины – крылья моста. Примерно тысячу раз в году под мостом проходят суда, и всякий раз при этом движение по мосту прекращается. Каждое крыло моста одним своим концом поднимается вверх, а по другую сторону оси, где оно закреплено в темной камере под башней, его скрытый конец – противовес – опускается вниз. Я всматриваюсь в этот противовес и пытаюсь прикинуть, сколько может весить такая махина. Словно угадав мои мысли, наш гид, Глен, заявляет: «Между прочим, внутри этой штуковины примерно 460 тонн свинцовых болванок и чугунных чушек. Они никак не закреплены и свободно перекатываются туда-сюда внутри противовеса, что хорошо слышно во время разведения крыльев моста. Когда на мосту проводят ремонтные работы, в противовес обычно добавляют или, наоборот, убирают какое-то количество болванок, чтобы крылья оставались идеально сбалансированными». (Похоже, мы стояли перед самой большой погремушкой в мире!)
Вот этот баланс и есть ключ к разгадке секрета таких «качелей». Чтобы развести крылья моста в сторону, не нужно прикладывать огромных усилий для их поднятия. Все, что требуется от механизма разведения моста, – слегка наклонить крылья. Концы крыла, расположенные по обе стороны оси, вокруг которой происходит поворот, идеально сбалансированы между собой. Это означает, что для приведения крыла в движение достаточно совсем незначительного усилия, необходимого только для того, чтобы преодолеть трение в подшипниках. Гравитация перестает, по сути, быть проблемой, поскольку сила тяжести по одну сторону оси точно сбалансирована с силой тяжести по ее другую сторону. Мы не можем избавиться от гравитации, но можем использовать ее против самой себя. К тому же мы можем создать очень большие «качели», что и сделали инженеры викторианской эпохи.
После экскурсии я немного прогулялась вдоль реки, а затем повернула в сторону моста. Мой взгляд на него полностью изменился, и мне нравилось, что теперь я воспринимаю его совершенно по-другому. У инженеров викторианской эпохи не было электроэнергии, компьютеров, которые могли бы управлять теми или иными процессами, новых материалов с уникальными свойствами (например, пластмасс или железобетона). Но они хорошо знали простые физические принципы. Простота конструкции Тауэрского моста – вот что мне особенно импонирует. Возможно, именно благодаря ей он продолжает исправно служить людям и после 120 лет эксплуатации (притом что за это время в его конструкцию было внесено минимальное число доработок и усовершенствований). Готическое возрождение, неоготика (этим техническим термином обозначают стиль fairy-castle – сказочный замок), – лишь оболочка, под которой скрываются гигантские «качели». Если инженеры когда-нибудь соорудят нечто подобное, то, я надеюсь, они догадаются сделать часть конструкции прозрачной, чтобы каждый мог оценить гениальную простоту их конструкторских решений.
Этот прием, позволяющий снизить остроту проблем гравитации, можно наблюдать повсеместно. Представьте, например, ось, расположенную на высоте 4 метра над поверхностью земли, с двумя 6-метровыми половинами «качели», балансирующими друг друга по обе ее стороны. Это не мост. Это тираннозавр, знаменитое плотоядное животное мелового периода. Две короткие толстые ноги удерживают его в вертикальном положении, а ось находится в области бедер. Причина, почему он раз за разом не падал плашмя на землю, мордой вниз, заключается в том, что крупная тяжелая голова хищника с острыми клыками уравновешивалась длинным мускулистым хвостом. Однако в жизни этой ходячей «качели» была одна проблема. Даже самый решительный и целеустремленный тираннозавр иногда испытывал потребность изменить направление движения. По оценкам ученых, тираннозаврам требовалось от одной до двух секунд, чтобы повернуться на 45°, что делало их чуть более неповоротливыми, чем умный и проворный тираннозавр из «Парка юрского периода». Что же могло в такой степени ограничивать огромного и мощного динозавра? Ответить на этот вопрос нам поможет физика.
Вращение фигуристки вокруг собственной оси вызывает у зрителей массу положительных эмоций: эстетическое удовольствие, изумление и восхищение безграничными возможностями человеческого тела. Но почему фигуристка, разведя руки в стороны, вращается медленнее, а прижав руки к телу, быстрее? Пример вращения фигуристки на льду полезно разобрать, потому что трение коньков о лед ничтожно и когда фигуристка вращается вокруг собственной оси, она обладает неким фиксированным «количеством» вращения. Кажется, нет ничего, что могло бы замедлить ее вращение. Поэтому действительно интересно, что, когда фигуристка изменяет свою форму, она изменяет и скорость вращения. Оказывается, по мере удаления тех или иных частей вращающегося тела от оси вращения при каждом очередном обороте им приходится совершать больший путь, в результате чего они, по сути, принимают на себя б о льшую долю наличного «вращения» [16]. Если вы раскинете руки в стороны, они окажутся дальше от оси вращения и скорость вращения замедлится в качестве компенсации. В сущности, именно с этой проблемой столкнулся тираннозавр. С помощью ног он был способен вырабатывать лишь определенную величину поворачивающей силы (так называемый вращающий момент), а поскольку его огромная голова и хвост выступали далеко в стороны, подобно очень толстым, тяжелым чешуйчатым версиям рук фигуристки, его повороты были замедленными. Любое небольшое, но проворное млекопитающее (например, какой-либо из наших очень далеких предков) оказалось бы в большей безопасности, если бы знало об этой особенности тираннозавров.
Те же соображения объясняют, почему мы раскидываем руки в стороны, когда думаем, что падаем. Если я стою прямо, а затем внезапно начинаю клониться вправо, я поворачиваюсь вокруг своих лодыжек. Если перед тем, как начать падать, я раскину руки в стороны или вверх, та же опрокидывающая сила не успеет сместить меня настолько, насколько сместила бы в противном случае, и у меня останется больше времени, чтобы внести в свою позу поправки и удержать равновесие. Вот почему гимнасты, выполняющие упражнения на бревне, почти всегда держат руки вытянутыми в стороны: это увеличивает их момент инерции и у них остается больше времени, чтобы скорректировать свою позу и не упасть на пол. Разводя руки в стороны, поднимая их вверх и опуская вниз, вы можете совершать вращения вокруг собственной оси; кроме того, это помогает сохранять равновесие.
Читать дальшеИнтервал:
Закладка: