Элен Черски - Физика и жизнь. Законы природы: от кухни до космоса
- Название:Физика и жизнь. Законы природы: от кухни до космоса
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2021
- Город:Москва
- ISBN:9785001469865
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Элен Черски - Физика и жизнь. Законы природы: от кухни до космоса краткое содержание
Физика и жизнь. Законы природы: от кухни до космоса - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Хотя мы не можем видеть сами атомы, мы можем видеть последствия происходящего на атомарном уровне. Разворачивающиеся там процессы, скрытые от наших глаз, непосредственно влияют на то, что мы делаем на более привычном для себя уровне. Но сначала нам нужно убедиться, что атомы существуют.
Сегодня мы считаем существование атомов само собой разумеющимся. Мысль о том, что все окружающие нас предметы (в том числе и мы сами) состоят из микроскопических «кирпичиков» материи, относительно проста и кажется абсолютно обоснованной, поскольку мы с нею выросли. Однако еще в начале XX века в научном сообществе велись серьезные дискуссии о том, существуют ли атомы вообще. Появление фотографии, телефона и радио уже возвестило о начале новой технологической эры, но среди ученых по-прежнему не было согласия по поводу того, из чего состоит материя. Многим ученым представление о ее атомарном строении казалось вполне разумным. Например, ученые-химики обнаружили, что разные элементы вступают в реакции в строго определенных пропорциях, что кажется логичным, если предположить, что для образования определенной молекулы вам нужен один атом одного вида плюс два атома другого вида. Но скептики не сдавались. Как можно быть уверенным в существовании чего-то такого, что невозможно увидеть, пощупать или измерить?
Много десятилетий спустя стала популярна цитата, приписываемая ученому и писателю-фантасту Айзеку Азимову, которая идеально выражает типичный путь научного открытия: «Самая волнующая фраза, которую можно услышать от ученого – та, которая возвещает о новом открытии, – вовсе не “Эврика!”, а, скорее, “Гм… Так-так, интересно…”» Окончательное подтверждение существования атомов может служить идеальным примером именно такого пути науки, но эта история началась более чем за семьдесят лет до наступления XX века. А именно в 1827 году, когда ботаник Роберт Броун рассматривал в микроскоп взвесь цветочной пыльцы в воде. Крошечные частицы отделялись от взвеси. Пожалуй, они были самыми маленькими из тех, которые можно было рассмотреть в оптическом микроскопе – как в то время, так и сейчас. Броун заметил, что даже когда вода идеально спокойна, эти крошечные частицы все равно колеблятся и подпрыгивают. Поначалу он предположил, что они живые, но впоследствии наблюдал аналогичное явление с точно неживыми частицами. Все это выглядело весьма странно, и у Роберта Броуна не было этому объяснения. Но он написал статью о своем эксперименте, и в течение последующих десятилетий многие другие ученые наблюдали то же явление, получившее название «броуновское движение». Оно было непрекращающимся, и в нем участвовали только самые крохотные частицы. Разные ученые предлагали разные объяснения, но ни одно из них не отражало его истинную причину.
В 1905 году эксперт швейцарского патентного бюро Альберт Эйнштейн опубликовал статью, связанную с его диссертационными исследованиями. Вообще говоря, мировую известность Эйнштейн приобрел благодаря исследованиям природы времени и пространства и специальной теории относительности и общей теории относительности. Но темой его диссертации была статистическая молекулярная теория жидкостей, и в своих статьях, опубликованных в 1905 и 1908 годах, он изложил строгое математическое объяснение броуновского движения. Допустим, подчеркивал он, жидкость состоит из множества молекул и они постоянно сталкиваются между собой. Он нарисовал картину жидкости как динамичной, неупорядоченной субстанции, молекулы в которой сталкиваются друг с другом, ускоряясь, замедляясь и изменяя направление движения после каждого соударения. Но что же происходит с более крупной частицей – намного крупнее, чем молекулы? Она испытывает на себе множество ударов с разных направлений. Но поскольку эти удары носят произвольный характер, время от времени такая частица получает больше ударов с какой-то определенной стороны, и это заставляет ее слегка сместиться в противоположном направлении. Затем в какой-то иной момент частица испытывает больше ударов снизу, чем сверху, и слегка смещается вверх. Таким образом, колебания более крупной частицы – всего лишь следствие соударений со многими тысячами молекул гораздо меньшего размера, чем она. Роберт Броун не мог видеть молекул, но мог наблюдать поведение более крупных частиц. Колебания, предсказанные Эйнштейном, соответствовали тому, что видел Броун. Такие колебания были возможны лишь в случае, если жидкость действительно состоит из молекул, соударяющихся друг с другом. Так что это может служить доказательством существования отдельных элементов материи – атомов. Более того, одно из уравнений Эйнштейна предсказывало, какими должны быть размеры атомов, чтобы вызывать колебания частиц в жидкости. Впоследствии, в 1908 году, Жан Батист Перрен провел еще более детальные эксперименты, и они подтвердили теорию Эйнштейна, а также сломили сопротивление даже самых стойких скептиков. Мир состоит из множества крошечных атомов, пребывающих в непрерывном движении. В результате возникло новое направление исследования материи. Указанные открытия как нельзя лучше дополняли друг друга. Постоянное колебание атомов не было случайностью; оно позволяло объяснить ряд наиболее фундаментальных физических законов, управляющих материальным миром.
Одним из величайших последствий нового понимания внутреннего устройства материального мира стало то, что явления вроде броуновского движения можно было объяснить с помощью статистики. Не было никакого смысла отслеживать, в какой конкретной точке пространства находится в данный момент тот или иной атом, и гадать, что произойдет, когда он столкнется с каким-либо другим атомом, а также вычислять траекторию движения каждого из миллиардов атомов в отдельно взятой капле жидкости. Вместо этого следует определять статистические характеристики происходящих процессов, учитывающие множество случайных столкновений. В любой конкретный момент невозможно предсказать, что данная частица сместится в точности на один миллиметр влево. Но вы вполне могли сказать, что в результате многократного проведения данного эксперимента частица в среднем за указанное время сместится на один миллиметр в сторону от своего исходного положения. Эту среднюю величину можно вычислить с большой точностью, но, несмотря на это, речь может идти только о средней величине. А это означало, что физика – более сложная и запутанная наука, чем казалось в 1850 году. Однако именно эта сложность объясняла более широкий круг физических явлений. Когда достоверно известно, что материя состоит из атомов, даже такие обыденные явления, как промокшая одежда, выглядят гораздо интереснее, чем прежде.
Читать дальшеИнтервал:
Закладка: