Дмитрий Соколов - Небесные магниты. Природа и принципы космического магнетизма [litres]
- Название:Небесные магниты. Природа и принципы космического магнетизма [litres]
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2021
- Город:Москва
- ISBN:9785001394433
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дмитрий Соколов - Небесные магниты. Природа и принципы космического магнетизма [litres] краткое содержание
Небесные магниты. Природа и принципы космического магнетизма [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Кстати, каково же магнитное поле по величине? Несколько микрогаусс. Далее стоит поговорить о единицах, в которых оно измеряется.
В школе нас учат пользоваться системой СИ [5] Международная система единиц, СИ (от фр. Système international d'unités, SI) – система единиц физических величин, современный вариант метрической системы. – Прим. ред.
, в которой магнитное поле измеряется в теслах. Хороший совет, но трудно приложимый ко всем случаям жизни. Проблема в том, что космические среды очень сильно отличаются от норм лабораторной физики и техники, для которых вырабатывалась система СИ и другие системы единиц.
С точки зрения школьной физики, например, расстояния измеряются в метрах, причем неважно, по какой оси отложены эти метры. С точки зрения астрономии дело обстоит совершенно по-другому. Легко измерить угол между двумя направлениями, а вот расстояние – очень трудно. Один из методов связан с наблюдением параллакса, то есть небольших перемещений, которые за год совершает на небе изображение далекой звезды из-за обращения Земли вокруг Солнца. Так возникает внесистемная единица длины – парсек, то есть расстояние, на котором параллакс составляет секунду дуги. Эта единица помнит о том, с каким способом измерения расстояния она связана. Астроном сделает все возможное, чтобы не переводить без надобности парсеки в метры.
Примерно так же обстоит дело и с магнитным полем. В школе учат, что мы должны четко различать напряженность магнитного поля и магнитную индукцию. Они отличаются на величину магнитной проницаемости, которая в ферромагнетиках может достигать тысяч, – приходится ее учитывать.
Не могу не рассказать поучительной истории. Начальству раз пришло в голову, что хорошо бы, чтобы аспирантские экзамены на каждой кафедре принимали бы не только ее сотрудники, но и люди с других кафедр. Вот мне и говорят: «Пойди на кафедру магнетизма и поучаствуй там в этой работе. Ты ведь магнетизмом занимаешься, хоть и другим». Пришел я туда, экзаменуют аспиранта, видимо плохого. Говорят ему: «Скажи хоть, что более фундаментальное понятие – магнитная индукция или напряженность магнитного поля?» Сижу как оплеванный. С одной стороны, магнитная индукция важнее, она определяет работу, например, магнита. С другой – магнитная проницаемость – макроскопическая характеристика вещества. В микромире ее нет, там только напряженность. До сих пор не знаю, какой ответ правильный, – и аспирант тоже не знал.
Так вот, в мире галактик нет никакого резона различать индукцию и напряженность: там не приходится особо заботиться о ферромагнетиках. Поэтому астрономы систематически измеряют напряженность магнитного поля в гауссах, хотя в школе учат, что ее нужно измерять в эрстедах (1 гаусс = 1 эрстед, но гаусс – единица магнитной индукции в гауссовской системе). Заодно и пользуются исключительно ею. А вот те, кто занимается геомагнетизмом, говорят о теслах (точнее, микротеслах) – исключительно удобно для общения.
Магнитное поле галактик порядка нескольких микрогаусс, по земным меркам – очень небольшое. (Для сравнения, магнитное поле Земли – примерно полгаусса.) Но это не значит, что оно неинтересное!
Вероятно, в самом центре галактики находится черная дыра. Это такой интересный и модный объект, о котором лучше почитать в специальной литературе. Для наблюдения черной дыры важно, падает ли на нее вещество галактики. Упасть ему на черную дыру непросто: вещество вращается, то есть у него есть угловой момент. Угловой момент – сохраняющаяся величина, то есть его трудно изменить, для этого нужна какая-то сила. Опять вспоминается школьный учебник физики с фигуристкой, которая сначала раскинула руки, а потом прижала их к телу и завращалась так, что дух захватывает. Лучше бы подумала, что сделать с угловым моментом вещества, которое хочется засунуть в черную дыру.
Один из способов отнять угловой момент – сделать это с помощью магнитного поля. Дело в том, что, кроме обычных спиральных галактик, есть еще галактики с перемычками. В одной из них – она носит звучное имя NGC1097 – хорошо видно, как к центру галактики идут магнитные линии, по которым туда, на черную дыру, может течь вещество. Магнитное поле создает натяжения, которые помогают отвести угловой момент вещества, падающего на черную дыру.
Можно привести и другие примеры, но мне больше нравится этот – он получен в ходе выполнения совместного российско-немецкого проекта. Я уже писал, что в этой области науки без участия немецких астрономов наблюдения на телескопе были бы невозможны. При этом проект был поддержан Российским фондом фундаментальных исследований – спасибо ему – и его немецким аналогом DFG – ему спасибо тоже!
2. Магнитное поле Солнца
Солнце гораздо ближе к нам, чем далекие галактики. Поэтому мы знаем о строении его магнитного поля гораздо более детально, чем про магнитные поля галактик. С другой стороны, мы наблюдаем магнитные поля только на поверхности Солнца, а о том, что происходит внутри Солнца, можем только догадываться.
Насколько сильно магнитное поле на поверхности Солнца? Ответ на этот, казалось бы, простой и прямой вопрос несколько ошарашивает. Можно сказать определенно: в солнечных пятнах напряженность магнитного поля составляет около одного килогаусса. Безусловно, это ориентировочная цифра – где-то побольше, где-то поменьше. Сами пятна имеют сложную структуру.
Но какова же величина магнитного поля между пятнами? В среднем около 10 гаусс, то есть в сто раз меньше. Однако это только в среднем. На поверхности Солнца хорошо заметны небольшие детали с самыми разными значениями магнитного поля. Чем выше разрешение телескопа, то есть чем более мелкие детали мы различаем на этой поверхности, тем большие числа мы получаем для напряженности.
Замечательный швейцарский астроном Ян Стенфло вообще советовал не говорить о напряженности магнитного поля на Солнце, а употреблять его интегральную характеристику – магнитный поток [6] Stenflo J. O. Scaling laws for magnetic fields on the quiet Sun. Astronomy and Astrophysics V. 541, P/17, 2012.
. Подобное парадоксальное строение типично для модных объектов, которые называются фракталами. В качестве примера часто приводят береговую линию Англии. Чем более подробную карту берут для вычисления длины этой береговой линии, тем больше получается эта длина. Оказывается, рост длины с увеличением детальности карты обратно пропорционален некоторой степени минимального масштаба, отраженного при построении карты.
В математике еще в начале XX в. была разработана система понятий, которая позволяет описывать подобные структуры. Основные идеи выдвинул немецкий математик Феликс Хаусдорф. Каждый может прочитать его очень ясную и интересную статью [7] Hausdorff F. Dimension und äußeres Maß. Mathematische Annalen 79 (1919), 157–179. www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN2351816840079 .
, опубликованную на излете Первой мировой войны и посвященную понятиям, которые позднее получили название хаусдорфовой размерности и меры (но для этого придется выучить немецкий язык). В физику эти идеи вошли после известной книги Мандельброта в 1970-е гг. В ней упомянут и Хаусдорф, но мельком.
Интервал:
Закладка: