Алексей Семихатов - Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей
- Название:Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2022
- Город:Москва
- ISBN:9785001398035
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Алексей Семихатов - Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей краткое содержание
Привычные способы описания вещей рушатся. Неизбывная вражда, определяемая наличием постоянной Планка, составляет неотъемлемую часть устройства Вселенной. Такое положение дел влияет не только на то, что понимается под движением объектов, но в некоторой степени и на сам характер их существования. Награды и премии Вошла в длинный список XV сезона премии Дмитрия Зимина «Просветитель».
В книге обсуждаются функционирование Солнечной системы и возможности путешествий по ней; взаимоотношения пространства, времени и движения в специальной теории относительности и определяемые ими проблемы галактических перелетов; общая теория относительности и ее эффекты, включая некеплеровы орбиты, замедление времени, гравитационные волны и экзотические способы сверхсветового перемещения; энтропия как незнание о микроскопическом движении и ее приложения от тепловых машин до демона Максвелла и черных дыр; квантовая механика, включая прохождение сквозь стены, уникальность устройства атомов, запутанность и интерпретации, призванные прояснить состояние кошки Шрёдингера. По правилам нашей Вселенной в ней невозможен покой, и читателю предстоит оценить ее беспокойное разнообразие.
Мир, где властвует принцип неопределенности, казалось бы, должен выглядеть размытым и неточным, но в действительности все наоборот: мир оказывается чрезвычайно жестким и строгим, а потому точным в отношении тех значений величин, которые все-таки доступны существующим там явлениям. …Перед нами еще один случай, когда отличие времени от пространства вносит свои поправки, и в пространстве-времени обстоятельства поворачиваются таким образом, что самые прямые линии, соединяющие два события, – это самые долгие путешествия для путешествующих. Для кого Для тех, кому хочется найти ориентиры для понимания современной научной картины мира, ее принципов и закономерностей развития.
Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Галилею принадлежит и сама идея равноускоренного падения, причем одинакового для всех тел [7] Последнее обстоятельство, как выяснилось впоследствии, может служить проводником глубоко в природу мира, и на дальнейших прогулках нам предстоит познакомиться с впечатляющим развитием событий.
. Доминировавшая до того точка зрения опиралась на представление о естественности равномерного движения; это, по-видимому, должно было означать, что после разжатия руки яблоко сразу приобретает ту скорость, с которой ударится о землю. Исходный же пункт рассуждений Галилея состоял в том, что падающие тела, когда им «ничто не мешает» (что тоже не так просто организовать), изменяют скорость по мере того, как падают. Но как меняется скорость? Галилей установил, что скорость увеличивается в течение всего падения и что тело последовательно проходит «через все градусы скорости» (этот подход, существенно расходящийся со взглядами Аристотеля, присутствует уже здесь, хотя и не принадлежит лично Галилею: приписывать качествам определенные «градусы» – не античная, а средневековая идея). Довольно долго он думал, что скорость увеличивается равными порциями через равные отрезки пути, но потом логическими рассуждениями отверг эту идею, а вместо этого показал, что скорость растет равными порциями за равные промежутки времени – пропорционально времени, как мы бы сейчас сказали. Я часто напоминаю себе, что все это происходило в отсутствие часов, хоть сколько-нибудь пригодных для точных измерений, и – что, может быть, даже более важно – до формализации понятия ускорения [8] Галилею удалось выразить закон равноускоренного движения («естественно ускоренного», в его трактовке), не вводя никакой количественной меры для ускорения; собственно говоря, при естественно ускоренном движении тело проходит все градусы скорости, но никаких градусов ускорения нет.
. Три с половиной столетия спустя, 2 августа 1971 г., командир «Аполлона-15» Дейв Скотт, стоя на поверхности Луны перед своим лунным модулем, произнес, глядя в камеру:
Вот в левой руке у меня перо, а в правой – молоток. И можно сказать, что одной из причин, по которой мы сюда добрались, был джентльмен по имени Галилео, живший очень давно, который сделал довольно существенное открытие о падающих телах в гравитационных полях. И мы подумали: где найти лучшее место, чтобы подтвердить его результаты, как не на Луне? Так что мы решили, что попробуем это вам сейчас показать. ‹…› Я отпущу оба предмета, и, будем надеяться, они достигнут поверхности одновременно.
[ Он разжимает перчатки – молоток и соколиное перо падают на лунную поверхность в согласии с ожиданиями. ]
Как вам такое?!
Справедливости ради надо сказать, что Галилей развивал не идею притяжения, а тезис о естественности равноускоренного движения; тем не менее одинаковое ускорение для всех падающих тел в отсутствие сопротивления воздуха – его открытие.
Как тебе такое, Галилео Галилей?
Кроме того, Галилей смог усмотреть в свойствах движения то, что позднее стали называть инерцией (склонность движущихся тел сохранять свое состояние движения или в частном случае – покоя), хотя слова «инерция» сам Галилей не употребляет. Свойство каждого тела двигаться по инерции не вполне очевидно на первый взгляд, потому что мы воспринимаем разные свойства вещей одновременно: тела вокруг нас не сохраняют состояние своего движения из-за того, что на них действует сила трения или сила сопротивления среды. Не зная заранее всех действующих здесь факторов, не так легко выделить свойство инерции и объяснить, как оно проявляет себя, когда других факторов нет. Здесь снова в полной мере потребовалась способность Галилея логически доводить постановку эксперимента до некоторого предела – скажем, предела исчезновения трения, – добиться которого в реальности невозможно, но свойства которого тем не менее делались ясными исходя из шагов, приближающих реальную постановку к идеальной.
Галилею же принадлежит мысль, что книга природы написана языком математики:
Я распознал у Сарси твердое убеждение в том, будто при философствовании необычайно важно опираться на мнение какого-нибудь знаменитого автора ‹…› В действительности же, синьор Сарси, все обстоит не так. Философия написана в величественной книге (я имею в виду Вселенную), которая постоянно открыта нашему взору, но понять ее может лишь тот, кто сначала научится постигать ее язык и толковать знаки, которыми она написана. Написана же она на языке математики, и знаки ее – треугольники, круги и другие геометрические фигуры, без которых человек не смог бы понять в ней ни единого слова; без них он был бы обречен блуждать в потемках по лабиринту [9] Пер. Ю. А. Данилова.
.
Вопрос о том, почему математика настолько эффективна в естественных науках, обсуждался многократно, и простого ответа на него нет, но рассуждения и примеры, приводимые различными авторами, читать интересно. Как бы то ни было, математика снабжает нас «движком» для того, чтобы делать выводы. Она особенно ценна в этом качестве, когда мы выходим за пределы области, где помощником может служить «здравый смысл». Это набор представлений, выработанных в рамках нашего ограниченного опыта, и они вполне могут отказывать (и отказывают!), когда этот опыт расширяется. Как следствие такого положения вещей математика скрыто присутствует почти везде на этих прогулках.
Законы движения. Но почему три закона Кеплера таковы? Почему Солнце в фокусе? Почему планеты движутся именно так?
Ответ на каждое «почему» должен опираться на нечто, что принимается без объяснения, иначе никакое объяснение не останавливается и поэтому перестает быть объяснением. Ответы, которые удается дать довольно близко к тому уровню, где уже приходится разводить руками, называются фундаментальными. В момент формулировки законов Кеплера они сами, вероятно, считались бы фундаментальными, реши тогда кто-нибудь классифицировать подобные утверждения таким образом. Как-никак эти законы были приложимы ко всем известным планетам. Но 80 лет спустя уже нельзя было так думать, потому что фундаментальными оказались другие законы – Ньютона [10] Ньютоновы «Начала» (Philosophiæ Naturalis Principia Mathematica) вышли в 1687 г.
. И это были законы совсем другого сорта. Из них следовало множество утверждений, включая и эллипс для планеты, и параболу для стрелы, не испытывающей сопротивления воздуха (и заодно – направление мысли, позволяющее как-то учесть это сопротивление). События начали разворачиваться стремительно, потому что фокус внимания сместился на причины .
Интервал:
Закладка: