Никита Шахулов - Определение положения в космосе на основе сопоставления изображения с 3D-цифровой моделью поверхности
- Название:Определение положения в космосе на основе сопоставления изображения с 3D-цифровой моделью поверхности
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785005699589
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Никита Шахулов - Определение положения в космосе на основе сопоставления изображения с 3D-цифровой моделью поверхности краткое содержание
Определение положения в космосе на основе сопоставления изображения с 3D-цифровой моделью поверхности - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Крупномасштабное визуальное географическое местоположение было опубликовано в [16]. В этой работе подробно обсуждалась двунаправленная взаимосвязь между изображением и местоположением, были всесторонне рассмотрены новейшие технологии в области крупномасштабной визуальной географической локации, а также обсуждалась новая тенденция в этой области. В частности, регистрация 2D—3D является ключевым шагом для создания эталонной цифровой 3D-модели земли [17—19]. Использование прямых методов 2D—3D регистрации показало лучшую производительность с точки зрения улучшения производительности регистрации [20]. В [20], применяя квантование визуального словаря и приоритетный поиск соответствия, была изучена проблема быстрой локализации на основе изображений на основе эффективного прямого сопоставления 2D-3D. Стремясь решить такие проблемы, как масштабируемость и неоднозначность из—за прямого метода сопоставления 2D—3D, в [21] был исследован принципиальный подход глобального сопоставления 2D-3D, в котором для достижения локализации камеры использовалась глобальная контекстуальная информация из обоих наборов данных. Чжао и др. [22] представили надежный метод измерения сходства для сканирования 2D-изображения в 3D-диапазоне, собранного в городских сценариях с использованием недорогих и высококачественных датчиков путем вычисления измерений сходства между набором пар атрибутов 2D—3D. Автоматический и точный метод сопоставления изображения с моделью был предложен в [23], где для выполнения регистрации использовался алгоритм оптимизации роя частиц (PSO). PSO объединил разреженные и плотные объекты, чтобы значительно увеличить их сильные стороны, независимо от модальностей как изображения, так и 3D-модели. Однако качество регистрации, на которое влияют параметры PSO, нуждается в более детальном анализе. PSO также может быть использован для уточнения перевода между двумя различными представлениями [24]. Ли и др. [24] предложили автоматический и не требующий маркеров метод регистрации для точной регистрации, основанный на семантических признаках, извлеченных из панорамных изображений и облаков точек. Глобальная система позиционирования (GPS) и IMU использовались для предоставления некоторых вспомогательных средств для структуры из движения (SfM) для оценки точной матрицы вращения между панорамной камерой и лазерным сканером.
Для метода PSO параметры могут оказывать некоторое негативное влияние на оценку внешней ориентации камеры. Чтобы справиться с этим недостатком, был использован метод поиска глобальной оптимизации, основанный на ветвлении и привязке (BnB). Этот метод находит новые верхние и нижние границы целевой функции путем преобразования задачи сопоставления 2D-3D в задачу оптимизации. При решении задачи оценки позы такого типа могут быть сформированы две стратегии сопоставления набора точек, а именно: фиксация набора точек 3D и фиксация набора точек 2D и системы координат проекции. Первый находит оптимальную ориентацию и положение камеры в соответствии с полученными изображениями cam-era и набором 2D-точек. Последний приводит набор точек 2D-проекции, который был извлечен из проекции 3D-точки, в соответствие с набором точек 2D путем нахождения соответствующих внешних параметров камеры. Эти две стратегии сопоставления гарантируют глобальный оптимум без предварительной информации о позе [25, 26]. Однако у этого метода есть и свой недостаток: большое пространство поиска увеличивает временные затраты и вычислительную сложность.
Методы регрессии позы на основе машинного обучения изучают соответствующую взаимосвязь между изображениями и 3D-объектами сцены из обучающих выборок с различными ориентациями и положениями. Правила принятия решений и регрессионные функции обучения также применяются к выборкам, и полученные результаты используются в качестве оценки отношения тестовых выборок. Метод, основанный на обучении, может улучшить производительность позирования камеры при позиционировании монокулярных изображений с шестью степенями свободы (6DOF) и демонстрирует большие перспективы в области 3D-модели положения камеры. Было предложено несколько решений для работы с сквозной сетью. Кендалл и др. [27] представили сверточную нейронную сеть (CNN), основанную на монокулярной системе повторной локализации 6DOF в реальном времени, чтобы возвращать позу камеры из одного изображения RGB сквозным способом без каких-либо дополнительных вспомогательных условий. Обучающая метка CNN была сгенерирована автоматически из видеозаписи сцены с помощью SfM и многовидового стерео (MVS). Затем обучение передаче было использовано для определения перемещения в крупномасштабных наборах данных классификации, что стало первым применением CNN в сквозном позиционировании положения камеры 6DOF. Ву и др. [28] представили три технологии перемещения камеры на основе CNN и провели углубленное исследование и анализ CNN для перемещения камеры. Все методы, упомянутые выше, могут работать только тогда, когда информация о глубине недоступна, что является наиболее очевидным ограничением CNN в физической области.
Конец ознакомительного фрагмента.
Интервал:
Закладка: