Боходир Каримов - Все науки. №4, 2022. Международный научный журнал

Тут можно читать онлайн Боходир Каримов - Все науки. №4, 2022. Международный научный журнал - бесплатно ознакомительный отрывок. Жанр: sci-phys. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Все науки. №4, 2022. Международный научный журнал
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    9785005686572
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Боходир Каримов - Все науки. №4, 2022. Международный научный журнал краткое содержание

Все науки. №4, 2022. Международный научный журнал - описание и краткое содержание, автор Боходир Каримов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Международный научный журнал «Все науки», созданный при ООО «Electron Laboratory» и Научной школе «Электрон», является научным изданием, публикующим последние научные результаты в самых различных областях науки и техники, представляя собой также сборник публикаций по вышеуказанным темам коллегии авторов и рецензируемый редколлегией на платформе «Ридеро» ежемесячно.

Все науки. №4, 2022. Международный научный журнал - читать онлайн бесплатно ознакомительный отрывок

Все науки. №4, 2022. Международный научный журнал - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Боходир Каримов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Использованная литература

1. И. Б. Иссинский. Введение в физику ускорителей заряженных частиц. Курс лекций. Под редакцией к.ф.-м. н. А. Б. Кузнецова. УНЦ-2012-52. Дубна. 2012.

2. М. Васильев, К. Станюкович. В глубины неисчерпаемого. Атомиздат. 1975.

3. П. Т. Асташенков. Подвиг академика Курчатова. Знание. Москва. 1979.

4. А. А. Боровой. Как регистрируют частицы. Наука. 1981.

5. В. Н. Дубровский, Я. А. Смородинский, Е. Л. Сурков. Релятивистский мир. Наука. 1984.

6. М. Е. Левинштейн, Г. С. Симин. Барьеры. Наука. 1987.

7. Л. А. Ашкинази. Вакуум для науки. Наука. 1987.

8. И. К. Кикоин. Рассказы о физике и физиках. Наука. 1986.

9. Г. С. Воронов. Штурм термоядерной крепости. Наука. 1985.

10. В. Р. Полищук. Как исследуют вещества. Наука. 1989.

О РАЗНОВИДНОСТЯХ СИСТЕМ ИНЖЕКТИРОВАНИЯ ЗАРЯЖЕННЫХ ЧАСТИЦ В УСКОРИТЕЛЬНОЙ ТЕХНИКЕ

Алиев Ибратжон Хатамович

Студент 2 курса факультета математики-информатики Ферганского Государственного Университета; Генеральный директор OOO «Electron Laboratory»

OOO «Electron Laboratory», Узбекистан

Ферганский Государственный Университет, Узбекистан

Аннотация.Введение пучка в ускоритель – один из самых важных операций, но перед этим необходимо сгенерировать определённые пучки этих частиц, среди которых используются электроны, протоны, дейтроны и прочие ионы. Для генерации же электронов, используют электронные источники, действующие на термоэлектронной эмиссии. Обычный такой источник состоит из полого анода цилиндрической формы с отверстием по центру. Внутри такого анода находиться коническая катодная линза, в центре которой и находиться нагретый катод.

Ключевые слова:инжекционные системы, введение пучка, заряженные частицы, ускорители, термоэлектронная эмиссия.

Annotation.The introduction of a beam into an accelerator is one of the most important operations, but before that it is necessary to generate certain beams of these particles, among which electrons, protons, deuterons and other ions are used. To generate Auger electrons, electronic sources acting on thermionic emission are used. A typical such source consists of a hollow cylindrical anode with a hole in the center. Inside such an anode there is a conical cathode lens, in the center of which there is a heated cathode.

Keywords:injection systems, beam injection, charged particles, accelerators, thermionic emission.

На катод подаётся напряжение порядка 50—100 кВ, такое же напряжение подаётся на линзу, анод же заземлён. При нагреве катода внешние электроны атомов получают достаточную разность потенциалов чтобы изначально покинуть свою орбиту, а после преодолеть электронную «стену», образуемую из свободных электронов на краю кристаллической решётки проводника. Затем катодная линза создаёт дополнительное напряжение, заставляя поток электронов не распыляться, а направляться к щели. Через которую и выходит поток.

При этом важно получить потоки частиц с большими токами малого размера и малой угловой расходимостью, без лишних потерь. Катод для такого источника может быть либо прямого накала, который излучает электроны непосредственно нагреваясь до 2000—2500 градусов Цельсия из вольфрама, либо подогревающиеся, когда материал, обладающий высокой эмиссионной способностью, но низкой проводимостью, то есть не в виде спирали, разогревается расположенный внутри него специальной спиралью из иного материала.

Большая система инжектирования ускорителя ОИЯИ Материал для катода в данном - фото 5

Большая система инжектирования ускорителя ОИЯИ

Материал для катода в данном случае представляет собой вольфрам, оксиды, соединение борид-лантана и другие. Пучки имеют характеристики при выходе от десятка Ампер и сотен кэВ.

Говоря же о ионных источником, необходимо сказать, что ионы получаются при пропуске разряда в газе или парях самого вещества при малом давлении от 1 до 10 —5 Па. Как это было не раз ранее упомянуто при описании вакуумных насосов, для ионизации эффективно применение магнитных полей. По итогу получается плазма, состоящая из электронов и ионов различной полярности, что позволяет разделить их при помощи всё того же магнитного поля, направив их туда электрическим. Так они разделяются и поступают в сам ускоритель.

И эти источники по своей необходимости должны генерировать большие токи для ионов, для проведения всё более эффективных экспериментов и работ с максимальными точностями.

Одним из разновидностей источников ионов является источник, действующий при помощи разряда Пеннинга или PIG-источник. Он основан на том принципе, что в металлическом изоляторе установлены два катода и перпендикулярно им два магнита, создающие магнитные поля. По середине их расположен анод с щелью, при том второй катод тоже имеет щель.

В камере достигается давление в 1-10 -2 Па, после чего на катоды подаётся напряжение 3—8 кВ, а анод заземлён. Это заставляет электроны покидать катод, направляться к аноду, но по пути ионизировать воздух, а ионы направляются к катоду вновь выбивая новые электроны, пока число ионов не увеличивается. Но в определённый момент начинает действовать новый электрод – сразу за щелью второго катода, который и начинает вытягивать эти ионы, поскольку и у анода есть щель. Затем следующий электрон их фокусирует и третий уже выводит из источника. Материал катода в конструкции либо титан, либо тантал.

При выделении самих ионов важным аспектом является увеличение их плотности на момент вывода из источника. Следующей моделью инжектора является устройство дуо-плазматрон. Этот источник действует таким образом, что в полости небольшого давления как в PIG-источнике, которых охлаждается внешне водяным охлаждением, расположен нагретый катод – источник электронов, который продолжает ионизировать среду. Но вместе с этим действуют внешние электрические и магнитные поля, магнитное поле – от внешних электромагнитов, электрические – от катода и капиллярного электрода под отрицательным потенциалом.

ВЧсистема инжектирования пучка Также находиться за капилляром конической формы - фото 6

ВЧ-система инжектирования пучка

Также находиться за капилляром конической формы с небольшим зазором анод, притягивающий ионы. Важный аспект в том, чтобы при помощи электрических и магнитных полей создать максимальную концентрацию плазмы, при этом количество полезных ионов доходит до 90%. Токи же доходят от мА до А с максимально малой угловой расходимостью, всё из-за той же концентрации. Такие источники используются для получения самых различных ионов, чаще всего ионов водорода, дейтерия и гелия, соответственно получаются протоны, дейтроны и альфа-частицы. Потенциал направляться от импульсного трансформатора на электроды, с определёнными частотами и доходит до 600—700 кВ.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Боходир Каримов читать все книги автора по порядку

Боходир Каримов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Все науки. №4, 2022. Международный научный журнал отзывы


Отзывы читателей о книге Все науки. №4, 2022. Международный научный журнал, автор: Боходир Каримов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x