Дмитрий Коротков - Объяснение термодинамики

Тут можно читать онлайн Дмитрий Коротков - Объяснение термодинамики - бесплатно ознакомительный отрывок. Жанр: sci-phys. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Объяснение термодинамики
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    9785005587657
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Дмитрий Коротков - Объяснение термодинамики краткое содержание

Объяснение термодинамики - описание и краткое содержание, автор Дмитрий Коротков, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Предлагается нестандартный подход к изложению термодинамики, с целью сделать эту теорию действительно понятной и легче запоминающейся. На основе предложенного подхода объясняются наиболее известные парадоксы и ошибки в термодинамических рассуждениях, в том числе в традиционных изложениях термодинамики. Много внимания уделяется понятию об энтропии. Объясняется связь энтропии с информацией. В заключении показываются принципиальные возможности для обхода второго начала термодинамики.

Объяснение термодинамики - читать онлайн бесплатно ознакомительный отрывок

Объяснение термодинамики - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Дмитрий Коротков
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Термодинамика рассматривает не любые системы со многими степенями свободы, а только такие, которые обладают следующим свойством: при отсутствии внешних воздействий в них с течением времени энергия распределяется по всем степеням свободы. Такую систему будем кратко называть – рассеивающая система.Рассеяние утверждается для средних по времени энергий в степенях свободы, при этом мгновенные значения энергий могут существенно изменяться во времени, колеблясь вокруг своих средних значений. Значения энергий в степенях свободы в каждый момент времени образуют некоторое статистическое распределение, которое может быть разным для разных видов систем. Эти распределения изучает статистическая физика, термодинамика их не рассматривает. Вид этих статистических распределений не влияет на законы термодинамики.

В теории устойчивости есть понятие «диссипативная система», но там «диссипация» энергии рассматривается только как её потеря, а механизмы диссипации не рассматриваются. Поэтому для исключения путаницы понятий, этот термин использовать не будем.

Для рассеивающих систем без ущерба для общности теории можно принять следующее условие, упрощающее рассуждения: энергия по степеням свободы рассеивается равномерно.Для некоторых систем не обнаруживается равномерного рассеяния энергии по их «кинематическим» степеням свободы. Доля распределяемой энергии будет зависеть от характера движения в данной степени свободы. Но для таких систем можно формально принять некоторое другое количество степеней свободы, назвав их, например, «эффективные», по которым энергия будет считаться распределяемой равномерно. Это не повлияет на построение термодинамики, т.к. в ней принципиально не рассматриваются движения по отдельным степеням свободы.

Пример: степени свободы молекул. Для двухатомной молекулы можно представить шесть «кинематических» степеней свободы: три поступательные (для общего движения молекулы в пространстве), две вращательные и одну колебательную. Последняя имеет в среднем двойную энергию относительно остальных степеней свободы: это кинетическая и потенциальная составляющие энергии. Для формального равенства распределения энергии по степеням свободы колебательную степень свободы нужно считать за две эффективных. Поэтому общее число эффективных степеней свободы двухатомной молекулы – семь. Из-за квантовых эффектов колебательная степень свободы возбуждается только при достаточно высоких температурах. В привычных нам температурных условиях двухатомные молекулы ведут себя как пяти-степенные системы.

В дальнейшем, при упоминании степеней свободы слово «эффективная», как правило, будем опускать.

Равновесное состояниерассеивающей системы – это состояние равенства средней по времениэнергии у всех её (эффективных) степеней свободы. Это состояние ещё называют термодинамическое равновесие.

В состоянии термодинамического равновесия для энергии примем эргодическую гипотезу: «среднее по времени равно среднему по ансамблю». По времени – для некоторой одной степени свободы, а «ансамбль» – это все степени свободы. Из определения видно, что в неравновесном состоянии эргодическая гипотеза может не выполняться.

В общем определении термодинамического равновесия нет необходимости задавать равномерное распределение частиц по пространству. Положения в пространстве можно включить в понятие «степени свободы» (это будет показано далее в данной книге). Вообще необходимость рассмотрения пространственного расположения частиц не обязательна и зависит от решаемой задачи.

Многие реальные системы частиц можно считать рассеивающими системами: не только газы, но в ряде задач также и жидкости, и твёрдые тела. Для систем частиц с сильными связями, степени свободы могут не вполне соответствовать движениям реальных частиц системы. В этом случае может использоваться понятие «квазичастицы». Их движения соответствует движениям связанных групп реальных частиц.

Строгие необходимые и достаточные условия для того, чтобы систему можно было считать рассеивающей, сформулировать достаточно сложно. Можно назвать следующие приблизительные условия:

1) Обмен энергией между степенями свободы должен происходить неупорядоченным, непредсказуемым образом. Иначе законы термодинамики могут не работать, да и систему с упорядоченными движениями можно описать более точной теорией, чем термодинамика.

2) Число степеней свободы системы не должно существенно уменьшаться с течением времени. Для пояснения рассмотрим предельный случай: пусть по каким-то причинам рассеивающая система, например, газ сконденсируется до твёрдого тела и охладится с уменьшением числа степеней свободы до небольшого числа. Понятно, что такую систему уже сложно назвать рассеивающей. Уменьшение степеней свободы существенно не во всех случаях, но в целом при рассмотрении процессов с уменьшением числа степеней свободы необходимо обращать внимание на сохранение системой рассеивающих свойств.

3) Если в системе существуют силовые поля, действующие на значительные доли от всех частиц системы, например, гравитация, то движение частиц под действием этих полей может становиться полностью или частично связанным, коррелированным. Это эквивалентно уменьшению числа степеней свободы системы, что может привести к потере системой рассеивающих свойств по условию (2).

Таким образом, для объяснения поведения рассеивающих систем мы использовали понятие о случайности. При этом возникают вопросы о логической связи термодинамики с классической механикой, которые обсуждались ещё в 19 веке при создании молекулярной физики: как частицы, движущиеся в пространстве по законам классической механики, которые (1) допускают обращение времени и (2) детерминистские, могут создавать системы, не допускающие обращения времени (рассеивание энергии запрещает возможность обратного) и содержащие элементы случайности?

В настоящее время это можно объяснить следующим образом:

1) На практике обращений времени не наблюдается, а рассеивающие системы есть. Поэтому, скорее всего, классическая механика слишком многое разрешает течению времени.

2) Если мы считаем, что в принципе можем что-то знать, то не обязательно мы действительно получим это знание. Однако статистическое описание всегда возможно, независимо от того, можем ли мы знать точное описание.

3) Известны механические системы, для которых нужно знать начальные условия с бесконечно большой точностью, чтобы смоделировать их поведение даже на конечное время, большее некоторого предельного. Простейшей системой такого типа является «двойной маятник» – система из двух маятников, присоединённых один к концу другого. Раскачивая основной маятник с некоторой частотой можно добиться непредсказуемых колебаний присоединённого маятника. Подобные системы возникают также и в газовой динамике. Поведение их на практике невозможно точно предсказать. А то, что нельзя предсказать, является случайностью, по определению . В таких системах можно пытаться искать только статистические закономерности. Для таких систем придуман специальный термин «динамический хаос».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Дмитрий Коротков читать все книги автора по порядку

Дмитрий Коротков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Объяснение термодинамики отзывы


Отзывы читателей о книге Объяснение термодинамики, автор: Дмитрий Коротков. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x