LibKing » Книги » sci-phys » Анатолий Трутнев - Квантовая физика и нити пространства

Анатолий Трутнев - Квантовая физика и нити пространства

Тут можно читать онлайн Анатолий Трутнев - Квантовая физика и нити пространства - бесплатно ознакомительный отрывок. Жанр: sci-phys. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Анатолий Трутнев - Квантовая физика и нити пространства
  • Название:
    Квантовая физика и нити пространства
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    9785005372369
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

Анатолий Трутнев - Квантовая физика и нити пространства краткое содержание

Квантовая физика и нити пространства - описание и краткое содержание, автор Анатолий Трутнев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга знакомит читателей с результатами исследований, проведенных с помощью модели, базовые принципы которой позволяют уточнить и углубить некоторые теории и положения квантовой физики. Рассмотрены структурные построения электронов, протонов, нейтронов, как квантовых объектов, показан механизм образования глюонов кварками, находящимися внутри протонов и нейтронов при их движении. Раскрыта глубинная суть цветовых зарядов и показан механизм взаимодействия частиц, обладающих цветовыми зарядами.Часть текста была ранее опубликована в книге «Силовые нити пространства призрак или реальность».

Квантовая физика и нити пространства - читать онлайн бесплатно ознакомительный отрывок

Квантовая физика и нити пространства - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Анатолий Трутнев
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

энергии такое количество, что ее хватило бы вскипятить все океаны на Земле». Но, несмотря на колоссальные запасы энергии в вакууме доступ к ней вследствие его высокой симметрии очень затруднителен. По современным представлениям ученых в вакууме беспрестанно образуются и исчезают пары частиц—античастиц: электрон—позитрон, протон антипротон и другие пары частиц – античастиц. Он буквально наполнен реальными и исчезающими частицами. Но в определенных условиях виртуальные частицы становятся реальными. Так, например, если сумма энергий столкнувшихся фотонов будет равной или чуть большей 1,02 МэВ, то в результате столкновения может появиться пара электрон – позитрон, а если в результате столкновения объем энергии возрастет до 1,876 КэВ, то можно ожидать рождение пары протон – антипротон. В последние десятилетия принято считать, что физический вакуум это фундаментальный вид физической реальности. И хотя теория физического вакуума пока ещё не создана, при её разработке необходимо учесть, что она должна органически переходить в квантовую теорию. Некоторые ученые, В. П Дорофеев и другие, полагают реальное существование физического вакуума в виде непрерывной среды, Его нельзя наблюдать, потому что это прямое следствие его непрерывности. Это делает физический вакуум парадоксальным объектом, и он подвергается все более пристальному вниманию физиков. Ученым предстоит найти принципиально новые методы его изучения, выяснить природу физического вакуума, а это позволит по-иному увидеть физические явления. Физический вакуум порождает физические поля и вещество. Во Вселенной доминируют законы физического вакуума, которые науке ещё не известны.

Квантовая физика описывает процессы, явления, закономерности, происходящие на уровне микроявлений на малых расстояниях. Предметами изучения квантовой физики являются квантовые объекты: молекулы, атомы, ядра химических элементов, элементарные частицы. Она изучает материю на фундаментальном уровне. Поэтому её положения трудно воспринимаются, в отличие от объектов, исследуемых классической физикой.

Результаты изучения микромира по законам квантования показали «странности» поведения частиц, населяющих этот мир. Одной такой замечательной странностью является известный в научном мире эксперимент с двумя щелями, который показал, что фотоны света ведут себя как волна, но состоят из частиц (фотонов). С этого эксперимента начались интересные парадоксы, которые заставили ученых пересмотреть традиционные взгляды на сами понятия на физическую сущность частиц и волн. Но настоящие чудеса начались, когда в экспериментах начали использовать электроны. Электроны это частицы, и когда поток электронов проходил через две щели, он оставлял на экране не две полосы, два следа против щелей, а интерференционную картину. Это говорило о том, что поток электронов распространяется волнами. Чтобы объяснить этот феномен, было выдвинуто предположение, что на фундаментальном уровне, электроны как частицы, сбираются вместе и у них проявляются волновые свойства. Решили повысить чистоту эксперимента и стали выпускать не поток электронов, а по одному электрону. К удивлению исследователей и в этом случае они наблюдали интерференционные чередования нескольких полос. Но, такое может происходить только в том случае, если электрон пролетал бы одновременно сквозь обои щели, а затем сталкивался бы сам с собой. Конечно, с позиции классической физии такое невозможно. Это нарушение всех её закономерностей, а вот в квантовой физике, это не чудеса, а реальные факты, происходящие в микромире. Проведенный учеными глубокий анализ, полученных результатов, позволил им сделать однозначный вывод. Квантовые частицы могут находиться в нескольких местах одновременно. В этом и заключается суперпозиция, которая означает, что частицы, населяющие микромир могут одновременно проявляться в различных точках пространства и при этом обладать различными свойствами.

Краеугольным камнем квантовой физики является другая её замечательная «странность», принцип соотношений неопределенностей Гейзенберга. Это фундаментальный закон квантовой механики. Его суть состоит в утверждении, что невозможно одновременно точно определить скорость и местонахождение частицы. Чем точнее будет определена первая величина, тем более неопределенной останется вторая и наоборот. То есть существуют определенные ограничения на измерение физических величин, характеризующих микрочастицы. Так, при проведении экспериментов с электронами, исследователи были буквально поражены поведением этой частицы. Когда не проводились наблюдения за электроном, он вел себя как волна. Но, как только исследователи начинали фиксировать, через какую щель проходит, электрон, он проявлял себя как частица. В результате на экране появлялся след против щели, а не чередование интерференционных полос. Это говорит о том, что существуют определенные ограничения на измерение физических величин, характеризующих поведение микрочастицы. Когда электрон летит к щели, он проявляет волновые свойства, то есть, находится в разных точках пространства и в них он имеет различный энергетический потенциал. Но как только, исследователи производили измерение одной из его физических величин, то происходил коллапс волновой функции. А это означало, что электрон в этом случае находился в определенном месте и имел определенное значение спина. Такое состояние частиц микромира соответствует принципу дополнительности, сформулированному Шредингером. Согласно этому принципу волновые и корпускулярные процессы, происходящие в микромире, не исключают, а взаимно дополняют друг друга. Понятия частицы и волны одновременно и дополняют, и противоречат друг другу.

Определенную лепту в развитие квантовой физики внес Нобелевский лауреат немецкий физик Вольфганг Паули. Он открыл закон, который является одним из важнейших принципов в понимании природы вещества. В современном научном лексиконе этот закон именуется принципом исключения или запретом Паули. Принцип Паули гласит – ни одна пара электронов в атоме не может иметь одинаковые электронные квантовые числа. Правомерности этому утверждению служат электромагнитные взаимодействия между электронными облаками и ядрами в атомах химических элементов. Так например, на самой ближайшей к ядру орбитали могут поместиться только два электрона с антипаралельными спинами. Оболочка с энергетическим уровнем выше помещает уже восемь электронов, на уровень выше 18 электронов, а на последнем уровне 32 электрона. Принцип запрета Паули можно применять только к частицам, которые имеют полуцелый спин. Частицы, у которых целый спин, такие как фотоны, с целым числом спинов, не следуют запрету Паули, поэтому могут иметь одинаковое квантовое состояние. Эти физические явления используются в лазерных устройствах

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Анатолий Трутнев читать все книги автора по порядку

Анатолий Трутнев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Квантовая физика и нити пространства отзывы


Отзывы читателей о книге Квантовая физика и нити пространства, автор: Анатолий Трутнев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img