Макс Лауэ - ИСТОРИЯ ФИЗИКИ
- Название:ИСТОРИЯ ФИЗИКИ
- Автор:
- Жанр:
- Издательство:ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО ТЕХНИКО-ТЕОРЕТИЧЕСКОЙ ЛИТЕРАТУРЫ
- Год:1956
- Город:МОСКВА
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Макс Лауэ - ИСТОРИЯ ФИЗИКИ краткое содержание
ИСТОРИЯ ФИЗИКИ - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Герман Гельмгольц (1821-1894) был тем человеком, универсальный ум которого смог полностью охватить универсальное значение закона сохранения энергии. Он пришел к этому принципу от медицины, как и Майер, работ которого он вначале не знал и к результатам исследований которого пришел поэтому независимо от него. В 1845 г. в маленькой статье Гельмгольц правильно установил ошибку знаменитого химика Юстуса Либиха (1803-1873), указав, что нельзя безоговорочно приравнять теплоту сжигания питательных веществ в теле животного теплотам сжигания химических элементов, из которых состоят эти вещества. Одновременно он дал краткий обзор последствий закона для различных областей физики.
Особенно ясное выражение закона Гельмгольц дал в докладе на заседании Берлинского общества физиков 23 июля 1847 г. В противоположность Майеру Гельмгольц признавал, как и большинство его современников, возможность механического объяснения всех явлений природы посредством центральных сил притяжения и отталкивания. Он ошибочно усматривал в нем достаточное и необходимое условие для невозможности perpetuum mobile. Но в своих дедукциях он не пользовался этой механистической гипотезой, а выводил различные выражения для энергий непосредственно из принципа невозможности perpetuum mobile хотя бы уже потому, что сведение всех явлений к механическим силам не могло быть достигнуто. Поэтому установленные им законы, не связанные с этой ошибочной концепцией, смогли ее пережить. Гельмгольц ввел в механику новое понятие «потенциальной энергии»; он дал также выражения энергии для гравитационных, статических электрических и магнитных полей. Новым являлось также то, что он говорил с энергетической точки зрения о получении токов в гальванических и термических элементах, а также об электродинамике, включая явления индукции. Когда мы теперь вычисляем энергию поля тяготения через произведения масс и потенциалов, энергию электрического поля через произведение зарядов и потенциалов, мы непосредственно опираемся на работу Гельмгольца.
Мы зашли бы слишком далеко, если бы захотели войти в эти вопросы подробнее; мы не можем также здесь заниматься дальнейшим развитием закона. Упомянем только заключительное 'определение, которое дал в 1853 г. Вильям Томсон (позднее лорд Кельвин, 1824-1907): «Под энергией материальной системы в определенном состоянии мы понимаем измеренную в механических единицах работы сумму всех действий, которые производятся вне системы, когда она переходит из этого состояния любым способом в произвольно выбранное нулевое состояние». В словах «любым способом» заключается закон природы - закон сохранения энергии.
Рассуждения Гельмгольца 1847 г. не нашли сразу общего признания; его старшие современники боялись возрождения фантазий гегелевской натурфилософии, против которой они давно боролись. Только имеющий большие заслуги в механике математик Густав Якоб Якоби (1804-1851) сразу признал в рассуждениях Гельмгольца законное продолжение хода мыслей тех математиков XVIII столетия, которые преобразовали механику. Но когда около 1860 г. закон сохранения энергии нашел всеобщее признание, он стал, конечно, очень скоро краеугольным камнем всего естествознания.
Особенно в физике отныне рассматривали любую новую теорию прежде всего с той точки зрения, удовлетворяет ли она этому закону. В 1890 г. воодушевление зашло у некоторых ученых, например у выдающегося физико-химика Вильгельма Оствальда (1853-1932), так далеко, что они сделали понятие энергии центральным пунктом мировоззрения («энергетики») или, по крайней мере, стремились вывести из него другие физические законы. Они настолько далеко зашли в своем отрицании второго начала термодинамики, что отрицали различие между обратимыми и необратимыми процессами и, например, переход тепла от более
высокой к более низкой температуре ставили на одну ступень с падением тел в поле тяжести. Плаик с незначительным успехом возражал против этого с точки зрения термодинамики. Более действенно возражал Людвиг Больцман с точки зрения атомной теории и статистики. Наконец, «энергетика» исчезла, как многие другие заблуждения, со смертью ее защитников.
Понятие энергии проникло также в технику. Каждая машина оценивается по ее энергетическому балансу, т. е. насколько вложенная энергия превращается в ней в желаемую форму энергии. В наше время это понятие входит в умственный инвентарь каждого образованного человека.
Учение об энергии не завершилось признанием закона сохранения. Оно до нашего времени продолжало развиваться. Гельмгольц вычислил, как было сказано, энергию электростатических и магнитостатических полей из зарядов и потенциалов. Применение фарадеев-ской идеи близкодействия побудило Максвелла локализовать эту энергию в пространстве и каждому элементу объема приписать определенную ее долю. Джон Генри Пойнтинг (1852-1914) в 1884 г. развил теорию потока энергии для изменяющихся полей, в которых объемные элементы не сохраняют своей доли энергии, совсем так, как будто бы электромагнитная энергия является субстанцией. Г. Ми показал в 1898 г., что можно перенести это представление на упругую энергию; например, через передаточный ремень, соединяющий паровую машину с рабочей машиной, идет поток энергии противоположно его движению, и когда вместо ремня устанавливают приводной вал, тогда энергия течет параллельно оси вала. Сюда присоединяется расширение Планком (1908) эйнштейновского закона инертности энергии (гл. 2 и 6): с любым потоком энергии связан импульс (в смысле механики). Плотность
импульса, т. е. импульс в единице объема, получается делением плотности потока энергии на квадрат скорости света. В действительности это уже было известно из опыта, впервые проведенного в 1901 г. Петром Лебедевым (1866-1912), относительно давления, оказываемого на тела светом или другими электромагнитными волнами. Именно свет несет импульс. Впрочем, этот закон установили уже в 1900 г. Анри Пуанкаре (1854-1912), Г. А. Лорентц (1853-1928) и другие, ограничиваясь только электромагнитной энергией.
В ньютоновской механике кинетическая энергия играет особую роль; она присоединяется к каждому другому виду энергии как следствие движения. Согласно теории относительности эта особая форма энергии отпадает. Вместо этого любой вид энергии умножается на множитель, зависящий от скорости. Это существенное изменение в наших воззрениях тесно связано с законом инертности энергии; получился бы порочный круг, если бы мы хотели, с одной стороны, свести какую-либо форму энергии к инерции тел и, с другой стороны, инерцию свести к энергии.
Чаще применяют закон инертности энергии в следующей форме: масса тела равна его энергии (в состоянии покоя), разделенной на квадрат скорости света. Сообразно с этим ограничивается значение закона сохранения массы. Получение теплоты или работы, например при сжатии тела, увеличивает его массу; отдача тепла или работы уменьшает ее. Химические реакции, поскольку они протекают с выделением тепла, уменьшают общую массу участников реакции, правда настолько мало, что это уменьшение не поддается даже точнейшему взвешиванию. Поэтому Ландольт (гл. 2) не мог его установить. Но при превращении атомных ядер освобождаются количества энергии, очень
Читать дальшеИнтервал:
Закладка: