Макс Лауэ - ИСТОРИЯ ФИЗИКИ

Тут можно читать онлайн Макс Лауэ - ИСТОРИЯ ФИЗИКИ - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО ТЕХНИКО-ТЕОРЕТИЧЕСКОЙ ЛИТЕРАТУРЫ, год 1956. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    ИСТОРИЯ ФИЗИКИ
  • Автор:
  • Жанр:
  • Издательство:
    ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО ТЕХНИКО-ТЕОРЕТИЧЕСКОЙ ЛИТЕРАТУРЫ
  • Год:
    1956
  • Город:
    МОСКВА
  • ISBN:
    нет данных
  • Рейтинг:
    4.63/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Макс Лауэ - ИСТОРИЯ ФИЗИКИ краткое содержание

ИСТОРИЯ ФИЗИКИ - описание и краткое содержание, автор Макс Лауэ, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

ИСТОРИЯ ФИЗИКИ - читать онлайн бесплатно полную версию (весь текст целиком)

ИСТОРИЯ ФИЗИКИ - читать книгу онлайн бесплатно, автор Макс Лауэ
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Закон Стефана-Больцмана говорит о суммарной энергии всего спектра. Целью исследования стало изучение распределения энергии в спектре. Существен-

*) Н. A. L о г е n t z, Verh. d. Deutschen Phys. Gesellschaft (1907).

ное приближение к этой цели означало третий шаг теории теплового излучения. Его сделал в 1893 г. Вильгельм Вин (1864-1928) путем комбинации методов термодинамики с принципом Допплера. Закон смещения Вина - великое открытие, недостаточно оцененное в современных учебниках, - дает возможность вычислить распределение энергии при любой температуре, если оно известно при данной температуре. Но даже без этого знания закон дает объяснение, почему с возрастанием температуры максимум интенсивности в спектре все больше и больше смещается к коротким волнам; почему, таким образом, тепловое излучение при более низких температурах остается невидимым, а при температурах около 6000° максимум интенсивности становится видимым; если известно его положение, то возможно вычислить температуру источника излучения, например Солнца. Вин первый распространил понятие энтропии не только на излучение черного тела, но также на направленное излучение, что было в связи с законом увеличения энтропии тем более необходимо, что энтропия источника излучения уменьшается. Вскоре после этого оказалось, что закон смещения ведет так далеко, как вообще могла пойти классическая физика, т. е. к порогу квантовой теории.

Было сделано много попыток решения проблемы вычисления интенсивности излучения как функции частоты колебаний и температуры. Мы упомянем закон, названный по имени лорда Рэлея (1842-1919) и Джемса Хопвуда Джинса (1877-1946), согласно которому интенсивность пропорциональна температуре и квадрату частоты колебаний. Этот закон недействителен для произвольно высоких частот колебаний (коротких длин волн) потому, что при этом не получается конечная общая энергия излучения. Однако он содержит определенную истину, поскольку имеет значение для небольших частот (больших длин волн). С 1896 г.

В. Вин и позднее также М. Планк (1858-1947) выдвинули закон распределения, согласно которому интенсивность уменьшается экспоненциально по мере возрастания длин волн. Так пытались избежать «ультрафиолетовой катастрофы». В 1899 г. удалось экспериментально подтвердить этот закон, но затем усовершенствованные измерения Отто Луммера (1860-1925) и Эрнста Принсгейма (1859-1917) привели к значительным отклонениям от этого закона, послужившим для Планка источником новых размышлений.

Двадцатилетняя деятельность Планка в области термодинамики и ясное понимание значения энтропии, которое тогда еще многими оспаривалось, сыграли большую роль в развитии его идей. Ядром проблемы он считал не формулу интенсивности, а однозначно связанное с нею отношение между энергией, частотой и энтропией излучения. Закону распределения -Вина соответствовала одна связь этих величин, закону Рэлея-Джинса - другая. Когда Планк в октябре 1900 г. узнал о новых измерениях Фердинанда Курл-баума (1857-1927) и Генриха Рубенса (1865-1922), подтверждающих закон для длинных волн, он установил на основе обоих видов связи интерполяционную формулу, из которой непосредственно получался названный по его имени закон излучения, содержащий прежде установленные формулы как предельные случаи*). Он доложил об этом в Немецком физическом обществе 19 октября 1900 г. Несмотря на некоторые сомнения, этот закон в последующем все больше и больше эмпирически подтверждался.

Оставалось, правда, главное дело, а именно: проблема надлежащего теоретического обоснования этого полуэмпирически найденного закона. Планк вернулся к обнаруженной Больцмаиом связи между энтропией и вероятностью (гл. 10) и вычислил вероятность числа колебаний линейного осциллятора. При этом он исходил

*) М. Plank, Zur Geschichte der Auffindung des physika-

lischen Wirkungsquantums, Naturwiss. 31, 153 (1943).

из неслыханно новой, только по необходимости им введенной идеи о том, что возможны только дискретные ступени энергии. Отсюда, действительно, получался закон излучения. Этот закон удовлетворял закону смещения Вина, если ступени энергии отличались друг от друга на величину h , где h - новая универсальная константа, элементарный квант действия. Таким путем теоретическая формула излучения становилась тождественной формуле, найденной путем интерполяции. Численное значение h получилось на основании измерений равным 6,5 • 10 -27 эрг • сек. Константа Больц-мана, которая также входит в закон излучения (поскольку применяется установленное Больцманом отношение между энтропией и вероятностью состояния), имеет значение 1,37 • 10 -16 эрг/град. Этот вывод Планк также доложил в Немецком физическом обществе 14 декабря 1900 г. С этого дня началось развитие теории квантов.

Закон квантов энергии h Планка был не продолжением прежней физики, а переворотом в ней. Следующие десятилетия все яснее показывали, насколько глубок был этот переворот и также насколько он был необходим. Именно с помощью теории квантов стало возможным понимание атомных явлений.

В последующие годы были сделаны еще некоторые другие попытки теоретически вывести закон излучения Планка. В 1910 г. П. Дебай, например, применил h -закон к электромагнитным собственным колебаниям черного тела и достиг таким путем, может быть, еще более простого подхода к формуле излучения. В 1917 г. Эйнштейн сделал интересный вывод, который дальше всего отходит от представления о колебаниях излучения черного тела. Он характеризует это излучение посредством спектральных областей и квантов энергии, которые относятся к этим областям. При этом он придает каждому возбужденному атому излучения черного тела определенную вероятность излучения в единицу

времени, а также пропорциональную энергии излучения вероятность поглощения или вынужденного испускания. Для невозбужденных атомов устанавливается только вероятность поглощения. Мысль Швейдлера о вероятности распада при радиоактивности находит здесь свое применение к другим атомным процессам; эта мысль распространилась на всю теорию квантов.

С другой стороны, термодинамика излучения доставила поразительное подтверждение принципа Больцмана. Две пространственно разделенные системы частиц в общем статистически независимы, так что их вероятности умножаются, когда вычисляют вероятности всей системы; этому соответствует, согласно принципу Больцмана, аддитивное сложение их частных энтропии в общую энтропию, которое принадлежит к числу неявных предпосылок классической термодинамики. Если производят такое вычисление у двух когерентных лучей, которые возникают из одного луча при отражении и преломлении, то находят, что общая энтропия их больше, чем энтропия первоначальных лучей. Но в 1906 г. М. Лауэ смог доказать, что этот процесс обратим; можно два когерентных луча опять сложить в один путем соответствующего отражения и преломления. Общая энтропия двух когерентных лучей должна, следовательно, быть равна энтропии первоначальных лучей. Противоречие разрешается, если отказываются от правила аддитивности частных энтропии когерентных лучей. Согласно принципу Больцмана это действительно необходимо, так как колебания обоих когерентных лучей полностью согласуются друг с другом; колебания в этих лучах не являются, следовательно, статистически независимыми. Это единственное исключение из правила аддитивности энтропии было бы без принципа Больцмана совершенно непонятным.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Макс Лауэ читать все книги автора по порядку

Макс Лауэ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




ИСТОРИЯ ФИЗИКИ отзывы


Отзывы читателей о книге ИСТОРИЯ ФИЗИКИ, автор: Макс Лауэ. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x