Иосиф Шкловский - Звезды: их рождение, жизнь и смерть
- Название:Звезды: их рождение, жизнь и смерть
- Автор:
- Жанр:
- Издательство:Наука, Главная редакция физико-математической литературы
- Год:неизвестен
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Иосиф Шкловский - Звезды: их рождение, жизнь и смерть краткое содержание
Книга посвящена центральной проблеме астрономии — физике звезд. Заключительный этап звездной эволюции представляет особенно большой интерес, так как он имеет прямое отношение к таким интереснейшим объектам современной астрономии, как пульсары, рентгеновские звезды и черные дыры. Проблемы, связанные с этими объектами, пока далеки от решения. Поэтому автор стремился осветить фактическое состояние вопроса, давая лишь общее представление о существующих: теориях и гипотезах. В книге рассматривается также проблема образования звезд.
Книга рассчитана на широкий круг лиц со средним образованием. Специальный интерес она представляет для студентов, лекторов, преподавателей, специалистов в области смежных наук.
Звезды: их рождение, жизнь и смерть - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
При такой интерпретации планетарных туманностей с необходимостью следует естественный вывод, что очень горячие ядра планетарных туманностей — это «обнажившиеся» недра красного гиганта. Такое «обнажение» произошло после того, как наружные слои красного гиганта по каким-то причинам потеряли с ним связь и, медленно расширяясь, «расползлись» по достаточно большому объему. Заметим, что по моей оценке, ныне являющейся общепризнанной, средняя масса планетарной туманности равна около 0,2 солнечной. А теперь представим себе, как бы выглядела звезда — красный гигант с массой чуть больше солнечной, если бы «вдруг» она лишилась своей столь «мощной» сравнительно холодной «шубы». Это был бы очень маленький объект с весьма высокой температурой, наружные слои которого находятся в состоянии бурной конвекции (см. схему модели на рис. 11.2). Из расчета модели красного гиганта следует, что плотность вещества на. уровне, выше которого имеется 0,2 массы Солнца, порядка 10 -4г/см 3, что в сотню раз больше, чем в солнечной фотосфере. На этом уровне температура будет около 200 000 К, в то время как радиус этого слоя примерно в десять раз превышает радиус Солнца. По-видимому, одновременно с отделением наружных слоев красного гиганта происходит довольно быстрое (но не катастрофическое) сжатие его внутренних областей до размеров лишь в несколько раз превышающих размеры земного шара. Впрочем, вполне возможно, что красные гиганты типа RV Тельца, по-видимому, являющиеся «родителями» планетарных туманностей имеют на заключительной стадии своей эволюции структуру, отличную от описанной выше. Например, у них может быть гораздо более сильная концентрация вещества к центру.
Необходимо подчеркнуть, что отделение наружных оболочек от основного «тела» звезды не носит взрывной характер (как это имеет место, например, в случае сверхновых звезд; см. следующую главу), а происходит спокойно , практически «с нулевой скоростью».
Какова же причина отделения оболочки? Следует заметить, что задача эта еще очень далека от решения. Возможные варианты будут рассмотрены ниже.
Образовавшийся после отделения наружной оболочки очень горячий объект должен быть в неустойчивом «промежуточном» состоянии. Он будет быстро эволюционировать, переходя в некоторое стабильное состояние. Что же это за состояние? Не подлежит сомнению, что таким стабильным объектом, в который эволюционируют ядра планетарных туманностей, должны быть белые карлики. Для отдельных ядер этот вывод следует непосредственно. Например, очень слабое ядро изображенной на рис. 13.1 планетарной туманности NGC 7293 (кстати, это самый близкий к нам объект этого типа) имеет абсолютную величину 13,5 и температуру больше 100 000 К. Отсюда следует, что его линейные размеры лишь немногим превышают размеры земного шара, что при массе около 1 массы Солнца дает среднюю плотность в несколько сотен тысяч граммов на кубический сантиметр. Это типичная плотность белого карлика! Наблюдается также любопытная тенденция: чем «старше» планетарная туманность (а их возраст оценить довольно легко), тем больше их ядра походят на белые карлики. Похоже на то, что за сравнительно короткое время, которое «живут» планетарные туманности, их ядра далеко не всегда успевают «успокоиться» и стать более или менее «нормальными» белыми карликами.
Важнейшим аргументом в пользу нашего вывода о генетической связи планетарных туманностей, красных гигантов и белых карликов является анализ статистических данных. Всего в нашей Галактике одновременно существуют несколько десятков тысяч планетарных туманностей, причем только малая их часть доступна прямым наблюдениям. С другой стороны, среднее время жизни их всего лишь порядка нескольких десятков тысяч лет. Это означает, что из какого-то источника каждый год возникает примерно одна планетарная туманность. И как «побочный продукт» появляется ежегодно точно такое же количество белых карликов — конечный продукт эволюции ядер этих туманностей. Это очень эффективный механизм, который за время эволюции нашей звездной системы привел к образованию нескольких миллиардов белых карликов. Но именно таков порядок величины полного количества белых карликов в Галактике! С другой стороны, статистика красных гигантов типа RV Тельца указывает, что их полное количество в Галактике около миллиона. Отсюда получается, что если считать их «родителями» планетарных туманностей, то время жизни звезд в этой стадии около миллиона лет — величина вполне приемлемая.
В § 11 уже было обращено внимание на то, что вещество самых центральных областей красных гигантов по своим свойствам (вырождение!) тождественно веществу белых карликов. Сейчас мы видим, что это не случайное совпадение. Подобно яйцу в курице, белый карлик постепенно вызревает в центре звезды с тем, чтобы «в подходящий момент» «вылупиться». Новорожденный «цыпленок», т. е. белый карлик, окружен разного рода «скорлупой» и прочими атрибутами своего рождения. Мы его называем «ядром планетарной туманности». Проходит, однако, несколько десятков или сотен тысяч лет — и получается нормальный белый карлик, в то время как образовавшаяся одновременно с ним планетарная туманность уже давно рассеялась в межзвездном пространстве.
Нарисованная только что качественная картина заключительной фазы эволюции красных гигантов к одновременному образованию планетарных туманностей и их ядер — маленьких, плотных горячих звезд, быстро эволюционирующих в белые карлики,— в последние годы получила большое развитие в ряде работ, опирающихся на достижения теории звездной эволюции. Сейчас уже многие детали этого важнейшего для звездной космогонии процесса стали ясными.
![]() |
Рис. 13.2:Эмпирическая зависимость светимости ядер планетарных туманностей от температуры их поверхностей. |
Прежде всего следует более подробно остановиться на процессе эволюции ядра планетарной туманности в белый карлик. В свое время (1956 г.) автор этой книги обратил внимание на то, что в процессе быстрой эволюции ядер температуры их поверхностных слоев вначале растут. Так как при этом светимости меняются не очень-то сильно, то можно было сделать вывод, что ядра быстро сжимаются. Более точные теоретические расчеты, опирающиеся на наблюдения планетарных туманностей в Магеллановых Облаках [ 33 ] Планетарные туманности в этих ближайших к нам галактиках удалены от нас на практически одинаковое расстояние, поэтому их светимости сравнительно легко определяются из видимых звездных величин.
, привели к установлению эмпирической зависимости между светимостью ядер планетарных туманностей и температурой их поверхностных слоев T e . Эта зависимость схематически представлена на рис. 13.2. На том же рисунке прерывистой линией показана аналогичная зависимость для остывающих белых карликов. Там же приведена зависимость «светимость — температура» для звезд главной последовательности, красных гигантов и так называемой «горизонтальной ветви» диаграммы Герцшпрунга — Рессела для шаровых скоплений. Уменьшение светимости ядер планетарных туманностей после достижения максимума при росте температуры означает их быстрое сжатие. В области диаграммы между самыми горячими ядрами и белыми карликами также наблюдаются слабые звезды. В их спектрах отсутствуют линии излучения и поглощения и очень усилена фиолетовая часть. Почти наверняка это сильно проэволюционировавшие ядра планетарных туманностей, у которых сами туманности, по причине их расширения, рассеялись. Таким образом, диаграмма «светимость — температура» наглядно демонстрирует (притом чисто эмпирически!) генетическую связь ядер планетарных туманностей и белых карликов.
Интервал:
Закладка: