Андрей Гришаев - Этот «цифровой» физический мир
- Название:Этот «цифровой» физический мир
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Андрей Гришаев - Этот «цифровой» физический мир краткое содержание
Трагедия многих талантливых одиночек, которые пытаются переосмыслить или даже подредактировать официальную физическую картину мира, заключается в том, что они основывают свои построения отнюдь не на экспериментальных реалиях. Талантливые одиночки читают учебники – наивно полагая, что в них изложены факты. Отнюдь: в учебниках изложены готовенькие интерпретации фактов, адаптированные под восприятие толпы. Причём, эти интерпретации выглядели бы очень странно в свете подлинной экспериментальной картины, известной науке. Поэтому подлинную экспериментальную картину намеренно искажают – в книге приведено множество свидетельств о том, что ФАКТЫ частью замалчиваются, а частью перевраны. И ради чего? Ради того, чтобы интерпретации выглядели правдоподобно – будучи в согласии с официальными теоретическими доктринами. На словах у учёных мужей получается красиво: ищем, мол, истину, а критерий истины – практика. А на деле у них критерием истины оказываются принятые теоретические доктрины. Ибо, если факты не вписываются в такую доктрину, то перекраивают не теорию, а факты. Ложная теория оказывается подтверждена лживой практикой. Зато самолюбие учёных не страдает. Мы, мол, верной дорогой шли, идём, и идти будем!
Это не очередная «теория заговора». Просто каждый учёный понимает, что если он «попрёт против течения», то он будет рисковать репутацией, карьерой, финансированием…
Успехи современных технологий не имеют к физическим теориям почти никакого отношения. Раньше мы были хорошо знакомы с ситуацией, когда на глючном и сбойном программном обеспечении иногда удавалось сделать что-то полезное. Выясняется, что достойную конкуренцию продукции крутых парней из Рэдмонда могут составить физические теории. Например, Эйнштейн тормознул физику своими творениями конкретно лет на сто. И атомную бомбу сделали не благодаря теории относительности, а вопреки ей. Но проблема не только лично в Эйнштейне с эпигонами, которые вслед за мэтром принялись наперебой навязывать реальности свои надуманные «аксиомы» и «постулаты», «наваривая» на этом «научную репутацию» и «конкретные бабки». Всё гораздо серьезнее.
Добро пожаловать в реальный, то есть, «цифровой» физический мир!
Этот «цифровой» физический мир - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Потому и не афишируют подробности опыта Кавендиша: он не обладает никакой доказательной силой. Неоткуда было взяться «отношению сил притяжения грузика к Земле и к болванке с известной массой», поскольку измеряемый эффект был обусловлен вовсе не притяжением грузиков к болванкам. А то, что измеряемый эффект оказался правдоподобен, можно объяснить результатом подгонки. Ведь известно, что перед своими измерениями Кавендиш долго переделывал и настраивал доставшуюся ему установку [Г1]. По-видимому, поначалу на ней неправдоподобные результаты получались. А правдоподобный результат Кавендиш знал заранее, поскольку Ньютон уже дал умозрительную оценку средней плотности Земли: « так как обыкновенные верхние части Земли примерно вдвое плотнее воды, немного ниже, в рудниках, оказываются примерно втрое, вчетверо и даже в пять раз более тяжёлыми, правдоподобно, что всё количество вещества Земли в пять или шесть раз более того, как если бы оно всё состояло из воды » (цитируется по [С1]). Авторитет Ньютона был велик, поэтому, хотя разные исследователи получали очень разные значения, сообщали они, конечно, только о тех, которые оказывались «правдоподобными». Результат долгого применения такого подхода вполне закономерен: оказалось, что Ньютон « с гениальной прозорливостью назвал, практически, современное значение средней плотности Земли » [С1]. Следует лишь уточнить, что это «современное значение» (≈5.5 г/см 3[А1]) не является непредвзятым: оно находится в том самом ряду «правдоподобных» значений.
А нас ещё уверяют, что результат Кавендиша был впоследствии неоднократно повторён его последователями! Вот интересно: если в первом результате желаемое выдавалось за действительное, то могло ли быть по-другому в его повторениях? Многие из статей последователей Кавендиша труднодоступны, а по их комментариям в специализированных обзорах, например, в [С1], невозможно проследить происхождение итоговых цифр. Недомолвки характерны и для тех статей [Р1,Л1,К1], с которыми нам удалось ознакомиться. А вот показательная статья [С2], авторы которой повторяли опыт Кавендиша на прецизионной установке в ГАИШе – и, якобы, обнаружили притяжение лабораторных болваночек в полном согласии с законом всемирного тяготения. Только загвоздка в том, что это притяжение не обнаруживается напрямую, и для «полного согласия» авторам пришлось прибегнуть к методу оптимизации многих параметров. Этот метод – настоящая находка! Он позволяет высоконаучно доказывать наличие эффектов, которые не существуют в действительности. Это делается так. Записывают навороченные, со множеством параметров, дифференциальные уравнения, в которых – это ключевой момент! – желаемый эффект учитывается так, как будто он существует. Получают экспериментальные данные. А затем, с помощью быстродействующего компьютера, проводят процедуру оптимизации – подгоняя значения параметров для наилучшего согласия теории, где желаемый эффект есть, с практикой, где желаемого эффекта нет. После этого считают, что получено наилучшее согласие теории с опытом – налицо же оптимизация, как ни крути. Во времена Кавендиша о таких мощных методах познания даже не мечтали!
Но вот – необычная статья [Г2]. В ней авторы достаточно подробно изложили, что и как они делали. Схематическое изображение их установки мы воспроизводим на Рис.2.2 . Использовались не крутильные весы в традиционном варианте, а подвешенная на 17-микронной вольфрамовой нити плоская стеклянная пластинка (1.5×76.0×41.6 мм). Притягивающие массы, четыре стальных шара по 8.14 кг, располагались в одной вертикальной плоскости, проходящей через ось подвеса, как показано на рисунке – причём столик, несущий эти шары, мог прецизионно поворачиваться. Если есть притяжение элементов объёма стеклянной пластинки к стальным шарам, то на пластинку должен действовать крутящий момент, знак и величина которого зависят от угла между плоскостью пластинки и плоскостью центров шаров. За один полный поворот столика с шарами, этот крутящий момент должен испытать два полных колебания. Эти колебания регистрировали так. Столик приводили в медленное вращение с постоянной скоростью, и включали слежение за ориентацией пластинки. Если пластинка начинала поворачиваться, то система обратной связи подавала на двигатель столика такое дополнительное управление, чтобы скорость вращения столика относительно пластинки поддерживалась, по возможности, постоянной. При этом угловое ускорение столика считалось искомым полезным эффектом – и авторы привели его типичную экспериментальную синусоиду. Всё у них было по последнему слову техники: и воздушные подшипники у столика, и протестированные ультразвуком шары, и вакуум, и магнитное экранирование, и контроль температуры – и даже кварцевый генератор в петле обратной связи они прокалибровали с помощью GPS-приёмника. Ну, всё – супер-пупер! Поэтому и выложили всё на всеобщее обозрение. Думали – никто не подкопается. А мы взяли да подкопались.
Вот, смотрите. Допустим, что элементы объёма пластинки и вправду притягиваются к шарам. Тогда действующий на пластинку крутящий момент будет обращаться в нуль, когда плоскость пластинки будет либо параллельна к плоскости шаров, либо перпендикулярна к ней. Но максимальные значения крутящего момента будут достигаться не точно посередине между нулями – они будут сдвинуты к нулям, соответствующим параллельным положениям плоскостей пластинки и шаров. Мы не поленились и выполнили соответствующее математическое моделирование для реальной геометрии установки [Г2]. Оказалось, что стягивания-растягивания результирующей синусоиды должны быть заметны даже невооружённым глазом – и уж тем более с использовавшимся энкодером, имевшим разрешение в 100 шагов на градус. Но экспериментальный график в [Г2] представляет собой идеальную синусоиду! Значит, эта идеальная синусоида никак не могла быть результатом гравитационного взаимодействия пластинки с шарами. Что же нам подсунули? Да ещё под это дело «уточнили» значения масс Земли и Солнца!
Рис.2.2
Вот интересно: при том, что попытки профессиональных экспериментаторов обнаружить гравитационное притяжение между лабораторными болваночками представляли собой сплошные проколы, фирма PASCO [П4] наладила выпуск настольных установок «для повторения фундаментального эксперимента Кавендиша». Похоже, руководители этой фирмы полагают, что, приобретя их игрушку, любая домохозяйка утрёт нос всем горе-профессионалам. Ведь в Инструкции по применению [П5] приводится аж три способа измерения гравитационной постоянной! Впрочем, один из них основан на том же трюке, что и у Кавендиша: смена позиций «притягивающих» шаров производится при подходящей фазе колебаний коромысла крутильных весов, отчего происходит сдвиг положения равновесия коромысла – причём, в нужную сторону. Зато ещё два способа работают благодаря вращательным уклонениям местной вертикали – феномену, который официальная наука не признаёт, поскольку он убийственен для закона всемирного тяготения. Мы вернёмся к этому вопросу в 2.15.
Читать дальшеИнтервал:
Закладка: