Глеб Анфилов - Бегство от удивлений

Тут можно читать онлайн Глеб Анфилов - Бегство от удивлений - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Детская литература, год 1974. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Бегство от удивлений
  • Автор:
  • Жанр:
  • Издательство:
    Детская литература
  • Год:
    1974
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4.33/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Глеб Анфилов - Бегство от удивлений краткое содержание

Бегство от удивлений - описание и краткое содержание, автор Глеб Анфилов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга рассказывает о рождении и развитии механики как науки, искавшей и ищущей ответы на самые простые и глубокие вопросы об устройстве природы.

Бегство от удивлений - читать онлайн бесплатно полную версию (весь текст целиком)

Бегство от удивлений - читать книгу онлайн бесплатно, автор Глеб Анфилов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Собственно говоря, основное содержание эйнштейновских взглядов на природу тяготения вам уже известно (курсив на странице 232). Остаются подробности и тонкости.

Разберемся, какова в общей теории относительности судьба систем пространственно-временного отсчета.

Это знакомые нам «индивидуальные» аквариумы специальной теории, но они изменили строение и форму. Часы же, висевшие на каждом аквариуме, размножились в огромное число раз. Системы отсчета потеряли жесткость — стали гибкими, растяжимыми, ячеистыми. Вместо жесткого аквариума, вместо твердого трезубца пространственных координат, увенчанного единственными часами, появился, по выражению Эйнштейна, моллюск отсчета.

Вообразите мягкую каучуковую губку, которая невидима, неощутима. Она огромна — величиной со Вселенную, однако связана каким-то образом с телом, движущимся как угодно, и движется вместе с ним. Эта губка состоит из бесчисленных крошечных ячеек. Каждая ячейка — участочек прямого пространства и равномерного времени (для наблюдателя, движущегося вместе с этим участком). Еще лучше представить себе, что никаких ячеек нет — просто в бесконечно малом пространстве губка не имеет кривизны и темп времени в достаточно близких точках различается бесконечно мало. Но в крупных масштабах заметна пространственно-временная четырехмерная кривизна. И она от ячейки к ячейке, от точки к точке плавно меняется.

Вот это неевклидово пространство, привязанное к определенному движущемуся телу и заполненное (мысленно) множеством часов, идущих в плавно меняющемся темпе, и есть эйнштейновский моллюск. Трепетная, чуткая система отсчета. Состояние ее зависит от масс, распределения и движения вещества.

В таком моллюске и происходит реальное физическое движение. Оно изображается графиками мира событий— на четырехмерной диаграмме Минковского, которая тоже искривлена. Геодезическими линиями ее, тут прямыми, там изогнутыми, определяется движение по инерции планет, спутников, камней. В том числе и падение. Падение — только по инерции!

Соль тут заключается в следующем: отсутствует то, что мы привыкли называть силой тяготения. Камень не притягивается Землей. Он по инерции движется вдоль четырехмерной геодезической, а вблизи Земли эта геодезическая изогнута так, что «втыкается» в мировую линию поверхности планеты. И камень, летя с башни по инерции, падает на Землю.

Штаны для мира

Пока наши разговоры о моллюске отсчета, сменившем старый аквариум, не более, чем слова. Пока есть только изложение замысла. Реализовать замысел — значит указать, каков моллюск, каковы конкретно закономерности изменений его формы, как она зависит от заполняющего его движущегося вещества.

Поставив перед собой эту цель, Эйнштейн шел к ней долго, с исключительным упорством. Надо было влить математическое содержание в идею кривизны четырехмерной пространственно-временной диаграммы. Дать формулы для ее вычисления и, как следствие, для предсказания движений тел в реальном мире.

Отправным пунктом работы послужила общая математическая характеристика кривизны — не что иное, как усложненная и обобщенная форма хорошо знакомой нам теоремы Пифагора.

Напомню, что эта теорема — метрическая, то есть содержит в себе рецепт определения расстояний. На плоскости она имела простейший школьный вид:

S 2= а 2+ b 2

На искривленной поверхности изменилась: S 2стало не равно S 2= а 2+ b 2. Не стоит выписывать измененной формы этой теоремы. Скажу лишь, что для определения квадрата расстояния на любой искривленной поверхности а 2и b 2надо на что-то умножить да еще в формуле появится член с произведением а на b. (Тут к тому же а и b будут бесконечно малыми величинами.) Аналогично изменится вид трехмерной теоремы Пифагора в изогнутом трехмерном пространстве.

А в мире Минковского? На четырехмерной диаграмме быстрых движений?

Эта диаграмма строилась на основе постулатов Эйнштейна. В результате на ней отобразилась связь пространства и времени: появились гиперболические калибровочные линии, отсекающие на разных осях разные масштабы длин и длительностей. Это определило выражение для квадрата интервала (то есть, опять напоминаю, расстояния между двумя событиями в четырехмерном пространственно-временном мире). В двенадцатой главе оно было записано так: S 2= l 2– c 2t 2. Расшифровав по «прямой» пространственной теореме Пифагора l 2 как сумму х 2+ у 2+ z 2, получим:

S 2= х 2+ y 2+ z 2— c 2t 2.

Очень похоже на теорему Пифагора, только четвертое слагаемое отрицательно. Но от этого можно избавиться. Ради симметрии сделаем замену: вместо -c 2t 2будем писать τ 2. Тогда сходство, во всяком случае по математической форме, будет полным.

Таково метрическое правило для измерения интервала на диаграмме частной теории и относительности — без учета тяготеющих масс. Тут мир не имеет кривизны.

Ну, а в искривленном мире выражение интервала усложнится — подобно тому, как усложнилась теорема Пифагора на шаре или седле. Каждый член правой части формулы на что-то умножится, появятся члены с произведениями ху, хz и т. д. Что же получится?

Дабы подчеркнуть неравномерную кривизну мира, все отсчеты снабдим значком Δ (дельта) — это будет означать, что измерения ведутся в достаточно малой области мира, где кривизна его остается постоянной. И тогда (поверьте на слово) интервал между двумя близкими событиями в искривленном мире пространства — времени будет выглядеть так:

ΔS 2= g 11Δx 2+ g 22Δy 2+ g 33Δz 2+g 44Δτ 2+ 2g 12ΔxΔy + 2g 13ΔxΔz + 2g 14ΔxΔτ + 2g 23ΔyΔz + 2g 24ΔyΔτ + 2g 34ΔzΔτ

Множители g, снабженные парой индексов (от 1 до 4), — коэффициенты кривизны. Их всего десять. От них-то, в конечном итоге, и зависит искривление мира. А сами они зависят от масс и расстояний до окружающих тел.

Написанное выражение носит громкий и почетный титул — фундаментальный метрический тензор. Отметив музыкальную звучность термина, воздержимся от расшифровки его смысла (это чистая математика). По существу, здесь не что иное, как усложнение и обобщение «покроя» школьных «пифагоровых штанов» на случай искривленного четырехмерного мира, диаграммы движения в эйнштейновском моллюске отсчета.

В далекой от звезд и планет пустоте при равномерном движении моллюск обращается в аквариум и никакой кривизны мира нет. Фундаментальный метрический тензор становится интервалом специальной теории относительности. В этом случае (при обратной замене τ 2на —c 2t 2) g 11= g 22= g 33=1, g 44=-c 2, a g 12= g 13= g 14= g 23= g 24= g 34=0

Там же, где нет вокруг полной пустоты, где сравнительно недалеки звезды и планеты, должны иметь место отклонения от этих «нормальных» значений метрических коэффициентов.

Эллиптическая кривизна

Следующий шаг — разгадка математической зависимости между метрическими коэффициентами и массами движущегося вещества.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Глеб Анфилов читать все книги автора по порядку

Глеб Анфилов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Бегство от удивлений отзывы


Отзывы читателей о книге Бегство от удивлений, автор: Глеб Анфилов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x